【題目】如圖,△ABC在平面直角坐標系中第二象限內(nèi),頂點A的坐標是(﹣2,3),先把△ABC向右平移4個單位得到△A1B1C1再作△A1B1C1關(guān)于x軸對稱圖形△A2B2C2 , 則頂點A2的坐標是________

【答案】(2,-3)

【解析】

ABC向右平移4個單位得A1B1C1,讓A的橫坐標加4即可得到平移后A1的坐標;再把A1B1C1x軸為對稱軸作軸對稱圖形A2B2C2,那么點A2的橫坐標不變,縱坐標為A1的縱坐標的相反數(shù).

∵將△ABC向右平移4個單位得△A1B1C1,
的橫坐標為-2+4=2;縱坐標不變?yōu)?;
∵把△A1B1C1以x軸為對稱軸作軸對稱圖形△A2B2C2
∴B2的橫坐標為2,縱坐標為-3;
∴點B2的坐標是(2,-3),
故答案為(-1,-2)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、C在雙曲線上,點 B、D在雙曲線上,AD// BC//y .

(I)m=6,n=-3,AD=3 時,求此時點 A 的坐標;

(II)若點A、C關(guān)于原點O對稱,試判斷四邊形 ABCD的形狀,并說明理由;

(III)AD=3,BC=4,梯形ABCD的面積為,求mn 的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y1=ax2+bx過(﹣2,4),(﹣4,4)兩點.
(1)求二次函數(shù)y1的解析式;
(2)將y1沿x軸翻折,再向右平移2個單位,得到拋物線y2 , 直線y=m(m>0)交y2于M、N兩點,求線段MN的長度(用含m的代數(shù)式表示);
(3)在(2)的條件下,y1、y2交于A、B兩點,如果直線y=m與y1、y2的圖象形成的封閉曲線交于C、D兩點(C在左側(cè)),直線y=﹣m與y1、y2的圖象形成的封閉曲線交于E、F兩點(E在左側(cè)),求證:四邊形CEFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,池塘邊有一塊長為18m,寬為10m的長方形土地,現(xiàn)在將其 余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用整式表示:

(1)菜地的長a m,寬b m;

(2)菜地面積S m2;

(3)x0.5m時,菜地面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郵遞員騎摩托車從郵局出發(fā),先向東騎行2km到達A村,繼續(xù)向東騎行3km到達B村,然后向西騎行9kmC村,最后回到郵局.

(1)以郵局為原點,以向東方向為正方向,用1個單位長度表示1km,請你在數(shù)軸上表示出A、BC三個村莊的位置;

(2)C村離A村有多遠?

(3)若摩托車每1km耗油0.03升,這趟路共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若四條直線x=1,y=﹣1,y=3,y=kx﹣3所圍成的凸四邊形的面積等于12,則k的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)一次函數(shù)y=kx+2k-3(k≠0),對于任意兩個k的值k1,k2,分別對應(yīng)兩個一次函數(shù)值y1,y2,k1k2<0,x=m,取相應(yīng)y1,y2,中的較小值p,p的最大值是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)y= 的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)
(1)求反比例函數(shù)的解析式;
(2)連接OB(O是坐標原點),若△BOC的面積為3,求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從左邊第一個格子開始向右數(shù),在每個小格子中都填入一個整數(shù),使得其中任意三個相鄰格子中所填整數(shù)之和都相等.

6

a

b

x

-2

1

(1)可求得x=______,第2016個格子中的數(shù)為______;

(2)判斷:前m個格子中所填整數(shù)之和是否可能為2016?若能,求出m的值,若不可能,請說明理由;

(3)如果x,y為前3格子中的任意兩個數(shù),那么所有的|x-y|的和可以通過計算|6-a|+|a-6|+|a-b|+|b-a|+|6-b|+|b-6|得到.若x,y為前20格子中的任意兩個數(shù),則所有的|a-b|的和為______.

查看答案和解析>>

同步練習冊答案