【題目】如圖,在正方形ABCD中,E是邊AD上一點,將△ABE繞點A按逆時針方向旋轉(zhuǎn)90°到△ADF的位置.已知AF=5,BE=13.
(1)求DE的長度;
(2)BE與DF是否垂直?說明你的理由.
【答案】(1)DE=7;(2)BE與DF垂直.理由見解析.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得DF=BE=13,AE=AF=5,再在Rt△ADF中利用勾股定理可計算出AD=12,即可求出DE的長度;
(2)延長BE交DF于H,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠ABE=∠ADF,根據(jù)三角形內(nèi)角和定理可計算出∠FHB=90°,即可判斷BH⊥DF.
解:(1)∵△ABE繞點A按逆時針方向旋轉(zhuǎn)90°得到△ADF,
∴DF=BE=13,AE=AF=5,
在Rt△ADF中,∵AF=5,DF=13,
∴AD==12,
∴DE=AD﹣AE=12﹣5=7;
(2)BE與DF垂直.理由如下:
延長BE交DF于H,
∵△ABE繞點A按逆時針方向旋轉(zhuǎn)90°得到△ADF,
∴∠ABE=∠ADF,
∵∠ADF+∠F=90°,
∴∠ABE+∠F=90°,
∴∠FHB=90°,
∴BH⊥DF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中, O為BD中點,以BC為邊向正方形內(nèi)作等邊BCE,連接并延長AE交CD于F,連接BD分別交CE,AF于G ,H ,下列結(jié)論:①∠CEH=45°;②GF//DE;③2OH+DH=BD;④BG=DG;⑤△BEC : S△BGC=.其中正確的結(jié)論是( )
A.①②⑤B.①②④C.①②D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)垃圾分類處理,改善生態(tài)環(huán)境,某小區(qū)將生活垃圾分成三類:廚余垃圾、可回收垃圾和其他垃圾,分別記為a,b,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C
(1)小明將垃圾分裝在三個袋中,任意投放,用畫樹狀圖或列表的方法求把三個袋子都放錯位置的概率是多少?
(2)某學(xué)習(xí)小組為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機抽取了某天三類垃圾箱中總共100噸的生活垃圾,數(shù)據(jù)統(tǒng)計如表(單位:噸):
A | B | C | |
a | 40 | 10 | 10 |
b | 3 | 24 | 3 |
c | 2 | 2 | 6 |
調(diào)查發(fā)現(xiàn),在“可回收垃圾”中塑料類垃圾占10%,每回收1噸塑料類垃圾可獲得0.7噸二級原料,某城市每天大約產(chǎn)生200噸生活垃圾假設(shè)該城市每天處理投放正確的垃圾,每天大概可回收多少噸塑料類垃圾的二級原料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3與x軸交于A,B兩點(A點在B點左側(cè)),A(﹣1,0),B(3,0),直線l與拋物線交于A,C兩點,其中C點的橫坐標(biāo)為2.
(1)求拋物線的函數(shù)解析式;
(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A,C,F,G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=(x﹣1)2+k的圖象與x軸交于點A(﹣1,0),C兩點,與y軸交于點B.
(1)求拋物線解析式及B點坐標(biāo);
(2)在拋物線上是否存在點P使S△PAC=S△ABC?若存在,求出P點坐標(biāo),若不存在,請說明理由;
(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形,若存在,求出Q點坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點D,BC=10cm,AD=8cm.點P從點B出發(fā),在線段BC上以每秒3cm的速度向點C勻速運動,與此同時,垂直于AD的直線m從底邊BC出發(fā),以每秒2cm的速度沿DA方向勻速平移,分別交AB、AC、AD于E、F、H,當(dāng)點P到達點C時,點P與直線m同時停止運動,設(shè)運動時間為t秒(t>0).
(1)當(dāng)t=2時,連接DE、DF,求證:四邊形AEDF為菱形;
(2)在整個運動過程中,問所形成的△PEF是否存在最大面積;如果存在請求出,如果不存在說明理由.
(3)是否存在某一時刻t,使△PEF為直角三角形?若存在,請求出此時刻t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸的正半軸和y軸的負半軸上,二次函數(shù)y=x2+bx+c的圖象經(jīng)過B、C兩點.
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象直接寫出不等式x2+bx+c>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張長20cm、寬12cm的矩形紙板,將紙板四個角各剪去一個邊長為cm的正方形,然后將四周突出部分折起,可制成一個無蓋紙盒.
(1)這個無蓋紙盒的長為 cm,寬為 cm;(用含x的式子表示)
(2)若要制成一個底面積是180m2的無蓋長方體紙盒,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積;
(3)求不等式的解集(請直接寫出答案).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com