【題目】我國(guó)是一個(gè)嚴(yán)重缺水的國(guó)家.為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)6噸時(shí),水價(jià)為每噸2元,超過(guò)6噸時(shí),超過(guò)的部分按每噸3元收費(fèi).該市某戶居民5月份用水x噸,應(yīng)交水費(fèi)y元.

1)若0x≤6,請(qǐng)寫(xiě)出yx的函數(shù)關(guān)系式.

2)若x6,請(qǐng)寫(xiě)出yx的函數(shù)關(guān)系式.

3)在同一坐標(biāo)系下,畫(huà)出以上兩個(gè)函數(shù)的圖象.

4)如果該戶居民這個(gè)月交水費(fèi)27元,那么這個(gè)月該戶用了多少噸水?

【答案】1)當(dāng)0x6y2x;(2)當(dāng)x6, y3x6;(3)如圖所示;見(jiàn)解析;(4)這個(gè)月該戶用了11噸水.

【解析】

1)根據(jù)水費(fèi)等于單價(jià)乘以數(shù)量列式即可;

2)根據(jù)水費(fèi)等于單價(jià)乘以數(shù)量,分兩個(gè)部分列式整理即可;

3)根據(jù)一次函數(shù)圖象的作法作出即可;

4)把y27代入函數(shù)關(guān)系式計(jì)算即可得解.

1)當(dāng)0x≤6,y2x;

2)當(dāng)x6,y2×6+3x6)=3x6,

y3x6;

3)如圖所示;

4∵2712,

該戶用水量超過(guò)6噸,

∴3x627,

解得x11

答:這個(gè)月該戶用了11噸水.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】凸四邊形的四個(gè)頂點(diǎn)滿足:每一個(gè)頂點(diǎn)到其他三個(gè)頂點(diǎn)距離之積都相等.則四邊形一定是(

A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC和△DEF中,滿足AB=DE,∠B=∠E,如果要判定這兩個(gè)三角形全等,那么添加的條件不正確的是( )

A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DEAC、AB分別交于點(diǎn)D和點(diǎn)E

1作出邊AC的垂直平分線DE;

2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在直角坐標(biāo)系內(nèi)的位置如圖所示.

(1)分別寫(xiě)出A、B、C的坐標(biāo);

(2)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫(huà)出A1B1C1,使A1B1C1ABC關(guān)于y軸對(duì)稱,并寫(xiě)出B1的坐標(biāo);

(3)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫(huà)出A2B2C2,使A2B2C2ABC關(guān)于原點(diǎn)對(duì)稱,并寫(xiě)出A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的面積為,對(duì)角線交于點(diǎn),點(diǎn),,,分別是,,,的中點(diǎn),連接,,得到菱形;點(diǎn),,分別是,的中點(diǎn),連接,,得到菱形;…,依此類推,則菱形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為的正方形的對(duì)角線交于點(diǎn),把邊、分別繞點(diǎn)同時(shí)逆時(shí)針旋轉(zhuǎn)得四邊形,其對(duì)角線交點(diǎn)為,連接.下列結(jié)論:

四邊形為菱形;

線段的長(zhǎng)為;

點(diǎn)運(yùn)動(dòng)到點(diǎn)的路徑是線段.其中正確的結(jié)論共有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 已知ABC中, BAC=90°, AB=AC, AE是過(guò)A的一條直線, 且B、C在AE的異側(cè), BDAE于D, CEAE于E.

(1)求證: BD=DE+CE.

(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖位置時(shí)(BD<CE), 其余條件不變, 問(wèn)BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)給予證明;

(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖位置時(shí)(BD>CE), 其余條件不變, 問(wèn)BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)直接寫(xiě)出結(jié)果, 不需證明.

(4)根據(jù)以上的討論,請(qǐng)用簡(jiǎn)潔的語(yǔ)言表達(dá)BD與DE,CE的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次出數(shù)的圖象與軸交于點(diǎn)、,與軸的正半軸的交點(diǎn)在的下方,則,②,③,④,其中正確的個(gè)數(shù)為(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案