13、當整數(shù)k=
±4
時,多項式x2+kx+4恰好是另一個多項式的平方.
分析:這里首末兩項是x和2這兩個數(shù)的平方,那么中間一項為加上或減去x和2積的2倍.
解答:解:∵多項式x2+kx+4恰好是另一個多項式的平方,
∴x2+kx+4=(x±2)2,
∴k=±4,
故答案是±4.
點評:本題是完全平方公式的應用;兩數(shù)的平方和,再加上或減去它們積的2倍,就構成了一個完全平方式.注意積的2倍的符號,避免漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某商業(yè)集團新建一小車停車場,經(jīng)測算,此停車場每天需固定支出的費用(設施維修費、車輛管理人員工資等)為800元.為制定合理的收費標準,該集團對一段時間每天小車停放輛次與每輛次小車的收費情況進行了調查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車可達1440輛次;若停車費超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結算,規(guī)定每輛次小車的停車費x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費-每天的固定支出)
(1)當x≤5時,寫出y與x之間的關系式,并說明每輛小車的停車費最少不低于多少元;
(2)當x>5時,寫出y與x之間的函數(shù)關系式(不必寫出x的取值范圍);
(3)該集團要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應定為多少元?此時日凈收入是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、目前國內最大跨徑的鋼管混凝土拱橋--永和大橋,是南寧市又一標志性建筑,其拱形圖形為拋物線的一部分(如圖1),在正常情況下,位于水面上的橋拱跨度為350米,拱高為85米.
(1)在所給的直角坐標系中(如圖2),假設拋物線的表達式為y=ax2+b,請你根據(jù)上述數(shù)據(jù)求出a,b的值,并寫出拋物線的表達式;(不要求寫自變量的取值范圍,a,b的值保留兩個有效數(shù)字)
(2)七月份汛期將要來臨,當邕江水位上漲后,位于水面上的橋拱跨度將會減小,當水位上漲4m時,位于水面上的橋拱跨度有多大?(結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某種玩具專賣店,玩具每只進價12元,每只售價y元與購買只數(shù)x(只)之間的函數(shù)圖象如圖所示.
信息解讀:
(1)購買9只玩具,每只玩具的售價為
 
元;購買60只玩具,每只玩具的售價為
 
元.
(2)當10≤x≤50時,求y與x的函數(shù)關系式.
圖象理解:
(3)設顧客一次購買x只(x>10,且x為整數(shù))時,專賣店所獲利潤為p元,求p與x的函數(shù)關系式.
解決問題:
(4)專賣店銷售時發(fā)現(xiàn):賣50只玩具反而比賣46只玩具獲利少.試問在專賣店降價方式不變的情況下,為了使玩具賣的越多獲利越大,每只玩具最低售價應為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

按下面的程序計算:

當輸入x=100時,輸出結果是299;當輸入x=50時,輸出結果是466;如果輸入x的值是正整數(shù),輸出結果是257,那么滿足條件的x的值最多有( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省九年級五月月考數(shù)學卷 題型:解答題

(本題滿分10分)某商品的進價為每件40元,售價為每件60元時,每個月可賣出100件;如果每件商品的售價每上漲1元,則每個月少賣2件.設每件商品的售價為x元(x為正整數(shù)),每個月的銷售利潤為y元.

(1)求yx的函數(shù)關系式并直接寫出自變量x的取值范圍;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

(3)當售價的范圍是是多少時,使得每件商品的利潤率不超過80%且每個月的利潤不低于2250元?

 

查看答案和解析>>

同步練習冊答案