一直角三角形的斜邊長比一直角邊長大2,另一直角邊長為6,則斜邊長為


  1. A.
    4
  2. B.
    8
  3. C.
    10
  4. D.
    12
C
分析:利用勾股定理即可解答.
解答:設斜邊長為x,則一直角邊長為x-2,根據(jù)勾股定理列出方程:62+(x-2)2=x2,解得x=10,故選C.
點評:本題考查了利用勾股定理解直角三角形的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若一直角三角形的斜邊長為c,內(nèi)切圓半徑是r,則內(nèi)切圓的面積與三角形面積之比是(  )
A、
πr
c+2r
B、
πr
c+r
C、
πr
2c+r
D、
πr
c2+r2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、一直角三角形的斜邊長比一直角邊長大2,另一直角邊長為6,則斜邊長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一直角三角形的斜邊長10,周長是24,則這個三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一直角三角形的斜邊長為c,它的內(nèi)切圓的半徑是r,則內(nèi)切圓的面積與三角形的面積的比是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有一直角三角形的斜邊長為6,分別以它的兩條直角邊為邊長向外作正方形,則這兩個正方形的面積的和為
36
36

查看答案和解析>>

同步練習冊答案