【題目】如圖,四邊形ABCD是正方形,直線L1、L2、L3,若L1與L2的距離為5,L2與L3的距離7,則正方形ABCD的面積等于( )
A.70B.74C.144D.148
科目:初中數(shù)學 來源: 題型:
【題目】如圖,李師傅想用長為80米的柵欄,再借助教學樓的外墻圍成一個矩形的活動區(qū). 已知教學樓外墻長50米,設(shè)矩形的邊米,面積為平方米.
(1)請寫出活動區(qū)面積與之間的關(guān)系式,并指出的取值范圍;
(2)當為多少米時,活動區(qū)的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點為C,求△OCB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:如圖1,在△ABC中,BE是AC邊上的中線, D是BC邊上的一點,CD:BD=1:2,AD與BE相交于點P,求的值.小昊發(fā)現(xiàn),過點A作AF∥BC,交BE的延長線于點F,通過構(gòu)造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
(1)的值為 ;
(2)參考小昊思考問題的方法,解決問題:
如圖3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .
求 的值;
若CD=2,求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】猜想與證明:小強想證明下面的問題:“有兩個角(圖中的和)相等的三角形是等腰三角形”.但他不小心將圖弄臟了,只能看見圖中的和邊.
(1)請問:他能夠把圖恢復成原來的樣子嗎?若能,請你幫他寫出至少兩種以上恢復的方法并在備用圖上恢復原來的樣子.
(2)你能夠證明這樣的三角形是等腰三角形嗎?(至少用兩種方法證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系xOy中,如果將點P繞點T(0,t)(t>0)旋轉(zhuǎn)180°得到點Q,那么稱線段QP為“拓展帶”,點Q為點P的“拓展點”.
(1)當t=3時,點(0,0)的“拓展點”坐標為 ,點(﹣1,1)的“拓展點”坐標為 ;
(2)如果 t>1,當點M(2,1)的“拓展點”N在函數(shù)y=﹣的圖象上時,求t的值;
(3)當t=1時,點Q為點P(2,0)的“拓展點”,如果拋物線 y=(x﹣m)2﹣1與“拓展帶”PQ有交點,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,點O是AC上一動點,過點O作直線MN∥BC,若MN交∠BCA的平分線于點E,交∠DCA的平分線于點F,連接AE、AF.
⑴說明:OE=OF
⑵當點O運動到何處時,四邊形AECF是矩形,證明你的結(jié)論
⑶在⑵的條件下,當⊿ABC滿足什么條件時,四邊形AECF為正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,,AD平分,點M是AC的中點,在AD上取點E,使得,EM與DC的延長線交于點F.
當時,求AE的長;求的大。
當時,探究與的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com