【題目】如圖,直線AB、CD相交于點O,OE是∠AOD的平分線,若∠AOC=60°,OF⊥OE.
(1)判斷OF把∠AOC所分成的兩個角的大小關系并證明你的結論;
(2)求∠BOE的度數(shù).
【答案】(1)∠AOF=∠COF,理由詳見解析;(2)∠BOE=120°.
【解析】
(1)求出∠AOD度數(shù),求出∠AOE,求出∠AOF,即可得出答案;
(2)求出∠BOD度數(shù),求出∠DOE度數(shù),相加即可得出答案.
(1)答:∠AOF=∠COF,
證明:∵O是直線CD上一點,
∴∠AOC+∠AOD=180°,
∵∠AOC=60°,
∴∠AOD=180°﹣60°=120°,
∵OE平分∠AOD,
∴.
∵OF⊥OE,
∴∠FOE=90°
∴∠AOF=∠FOE﹣∠AOE=90°﹣60°=30°,
∴∠COF=∠AOC﹣∠AOF=60°﹣30°=30°,
∴∠AOF=∠COF.
(2)解:∵∠AOC=60°,
∴∠BOD=∠AOC=60°,∠AOD=180°﹣60°=120°,
∵OE是∠AOD的平分線,
∴∠DOE=∠AOD=60°,
∴∠BOE=∠BOD+∠DOE=60°+60°=120°.
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的說理過程.
已知:如圖,OA=OB,AC=BC.
試說明:∠AOC=∠BOC.
解:在△AOC和△BOC中,
因為OA=______,AC=______,OC=______,
所以________≌________(SSS),
所以∠AOC=∠BOC(__________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結論:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=kx+k(k為正整數(shù))與坐標軸所構成的直角三角形的面積為Sk , 當k分別為1,2,3,…,199,200時,則S1+S2+S3+…+S199+S200=( 。
A.10000
B.10050
C.10100
D.10150
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電腦店有A、B兩種型號的打印機和C、D、E三種芯片出售.每種型號的打印機均需要一種芯片配套才能打。
(1)下列是該店用樹形圖或列表設計的配套方案,①的位置應填寫 , ②的位置應 填寫
(2)若僅有B型打印機與E種芯片不配套,則上面(1)中的方案配套成功率是
芯片 | C | D | E |
A | (A,C) | (A,D) | ② |
B | (B,C) | (B,D) | (B,E) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在周長為12的菱形ABCD中,CE=1,CF=2,若點P為對角線BD上一動點,則PE+PF的最小值是( )
A. B. 2 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=ADAB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一塊破損的木板.
(1)請你設計一種方案,檢驗木板的兩條直線邊緣 AB、CD 是否平行;
(2)若 AB∥CD,連接 BC,過點 A 作 AM⊥BC 于 M,垂足為 M,畫出圖形,并寫出∠BCD 與∠BAM 的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】星期天,玲玲騎自行車到郊外游玩,她離家的距離與時間的關系如圖所示,請根據(jù)圖象回答下列問題.
(1)玲玲到達離家最遠的地方是什么時間?離家多遠?
(2)她何時開始第一次休息?休息了多長時間?
(3)她騎車速度最快是在什么時候?車速多少?
(4)玲玲全程騎車的平均速度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com