【題目】如圖,有一艘貨船和一艘客船同時從港口A出發(fā),客船每小時比貨船多走5海里,客船與貨船速度的比為4:3,貨船沿東偏南10°方向航行,2小時后貨船到達(dá)B處,客船到達(dá)C處,若此時兩船相距50海里.
(1)求兩船的速度分別是多少?
(2)求客船航行的方向.
【答案】(1)兩船的速度分別是20海里/小時和15海里/小時;(2)客船航行的方向為北偏東10°方向.
【解析】
(1)設(shè)兩船的速度分別是4x海里/小時和3x海里/小時,依據(jù)客船每小時比貨船多走5海里,列方程求解即可;
(2)依據(jù)AB2+AC2=BC2,可得△ABC是直角三角形,且∠BAC=90°,再根據(jù)貨船沿東偏南10°方向航行,即可得到客船航行的方向為北偏東10°方向.
(1)設(shè)兩船的速度分別是4x海里/小時和3x海里/小時,依題意得:
4x﹣3x=5.
解得:x=5,∴4x=20,3x=15.
答:兩船的速度分別是20海里/小時和15海里/小時;
(2)由題可得:AB=15×2=30,AC=20×2=40,BC=50,∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠BAC=90°.
又∵貨船沿東偏南10°方向航行,∴∠1=10°.
∵∠1+∠2=∠2+∠3=90°,∴∠3=∠1=10°,∴客船航行的方向為北偏東10°方向.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,試求∠DFB和∠DGB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的3個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B順時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則線段AB掃過的圖形面積是平方單位(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿DE、EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數(shù)為( 。
A. 40° B. 41° C. 42° D. 43°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AD⊥BC于點D,E為AB邊上任意一點,EF⊥BC于點F,∠1=∠2.求證:DG∥AB.請把證明的過程填寫完整.
證明:∵AD⊥BC,EF⊥BC( ),
∴∠EFB=∠ADB=90°(垂直的定義)
∴EF∥ ( )
∴∠1= ( )
又∵∠1=∠2(已知)
∴ ( )
∴DG∥AB( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車廠去年每個季度汽車銷售數(shù)量(輛)占當(dāng)季汽車產(chǎn)量(輛)百分比的統(tǒng)計圖如圖所示.根據(jù)統(tǒng)計圖回答下列問題:
(1)若第一季度的汽車銷售量為2100輛,求該季的汽車產(chǎn)量;
(2)圓圓同學(xué)說:“因為第二,第三這兩個季度汽車銷售數(shù)量占當(dāng)季汽車產(chǎn)量是從75%降到50%,所以第二季度的汽車產(chǎn)量一定高于第三季度的汽車產(chǎn)量”,你覺得圓圓說的對嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com