【題目】小明騎自行車(chē)從甲地到乙地,圖中的折線表示小明行駛的路程與所用時(shí)間之間的函數(shù)關(guān)系.試根據(jù)函數(shù)圖像解答下列問(wèn)題:

1)小明在途中停留了____,小明在停留之前的速度為____;

2)求線段的函數(shù)表達(dá)式;

3)小明出發(fā)1小時(shí)后,小華也從甲地沿相同路徑勻速向乙地騎行,時(shí),兩人同時(shí)到達(dá)乙地,求為何值時(shí),兩人在途中相遇.

【答案】2; 10;

2s=15t-40;

3t=3ht=6h.

【解析】

1)由圖象中的信息可知:小明從第2小時(shí)到第4小時(shí)行駛的路程沒(méi)有發(fā)生變化,所以途中停留了2;小明2小時(shí)內(nèi)行駛的路程是20 km,據(jù)此可以求出他的速度;
2)由圖象可知:B(4,20)C(5,35),設(shè)線段的函數(shù)表達(dá)式為s=kt+b,代入后得到方程組,解方程組即可;
3)先求出從甲地到乙地的總路程,現(xiàn)求小華的速度,然后分三種情況討論兩人在途中相遇問(wèn)題.當(dāng)時(shí), 10t=10(t-1);當(dāng)時(shí), 20=10(t-1);當(dāng)時(shí), 15t-40=10(t-1);逐一求解即可.

解:(1)由圖象可知:小明從第2小時(shí)到第4小時(shí)行駛的路程沒(méi)有發(fā)生變化,所以途中停留了2;

由圖象可知:小明2小時(shí)內(nèi)行駛的路程是20 km

所以他的速度是km/ h);

故答案是:2;10.
2)設(shè)線段的函數(shù)表達(dá)式為s=kt+b,

由圖象可知:B(420),C(5,35),

,

,

∴線段的函數(shù)表達(dá)式為s=15t-40
3)在s=15t-40中,當(dāng)t=6時(shí),s=15×6-40=50,

∴從甲地到乙地全程為50 km,

∴小華的速度=km/ h),

下面分三種情況討論兩人在途中相遇問(wèn)題:

當(dāng)時(shí),兩人在途中相遇,則

10t=10(t-1),方程無(wú)解,不合題意,舍去;

當(dāng)時(shí),兩人在途中相遇,則

20=10(t-1),解得t=3;

當(dāng)時(shí),兩人在途中相遇,則

15t-40=10(t-1),解得t=6

∴綜上所述,當(dāng)t=3ht=6h時(shí),兩人在途中相遇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB6,BC8,點(diǎn)EBC延長(zhǎng)線上一點(diǎn),且BDBE,連接DEQDE的中點(diǎn),有一動(dòng)點(diǎn)PB點(diǎn)出發(fā),沿BC以每秒1個(gè)單位的速度向E點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)如圖1,連接DP、PQ,則SDPQ_____(用含t的式子表示);

(2)如圖2,M、N分別為ABAD的中點(diǎn),當(dāng)t為何值時(shí),四邊形MNQP為平行四邊形?請(qǐng)說(shuō)明理由;

(3)如圖3,連接CQ,AQ,試判斷AQ、CQ的位置關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A(-2,0),B(4,0)兩點(diǎn),且函數(shù)的最大值為9.

(1)求二次函數(shù)的解析式;

(2)設(shè)此二次函數(shù)圖象的頂點(diǎn)為C,與y軸交點(diǎn)為D,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)C為∠AOB內(nèi)一點(diǎn).

1)在OA上求作點(diǎn)D,在OB上求作點(diǎn)E,使CDE的周長(zhǎng)最小,請(qǐng)畫(huà)出圖形;(不寫(xiě)做法,保留作圖痕跡)

2)在(1)的條件下,若∠AOB30°,OC10,求CDE周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,O的內(nèi)接四邊形ABCD兩組對(duì)邊的延長(zhǎng)線分別交于點(diǎn)E、F

(1)若E=F時(shí),求證:ADC=ABC;

(2)若E=F=42°時(shí),求A的度數(shù);

(3)若E=α,F=β,且α≠β請(qǐng)你用含有α、β的代數(shù)式表示A的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為(  )

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD ABC 的角平分線,DE,DF 分別是BAD ACD 的高,得到下列四個(gè)結(jié)論:①OAOD;②ADEF;③當(dāng)∠A90°時(shí),四邊形 AEDF 是正方形;④AE+DFAF+DE.其中正確的是_________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在正方形ABCD中,EAB上一點(diǎn),FAD延長(zhǎng)線上一點(diǎn),且DFBE.求證:CECF

2)如圖2,在正方形ABCD中,EAB上一點(diǎn),GAD上一點(diǎn),如果∠GCE45°,請(qǐng)你利用(1)的結(jié)論證明:GEBEGD

3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:

如圖3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°ABBC,EAB上一點(diǎn),且∠DCE45°BE4,DE="10," 求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了滿足學(xué)生借閱圖書(shū)的需求,計(jì)劃購(gòu)買(mǎi)一批新書(shū),為此,該校圖書(shū)管理員對(duì)一周內(nèi)本校學(xué)生從圖書(shū)館借出各類(lèi)圖書(shū)的數(shù)量進(jìn)行了統(tǒng)計(jì),結(jié)果如圖所示,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖

2)該校學(xué)生最喜歡借閱哪類(lèi)圖書(shū)?并求出此類(lèi)圖書(shū)所在扇形的圓心角的度數(shù).

3)該校計(jì)劃購(gòu)買(mǎi)新書(shū)共600本,若按扇形統(tǒng)計(jì)圖中的百分比來(lái)相應(yīng)地確定漫畫(huà)、科普、文學(xué)、其它這四類(lèi)圖書(shū)的購(gòu)買(mǎi)量,問(wèn)應(yīng)購(gòu)買(mǎi)這四類(lèi)圖書(shū)各多少本?

查看答案和解析>>

同步練習(xí)冊(cè)答案