【題目】如圖1,Rt△ACB中,AC=3,BC=4,有一動圓⊙O始終與Rt△ACB的斜邊AB相切于動點(diǎn)P,且⊙O始終經(jīng)過直角頂點(diǎn)C.
(1)如圖2,當(dāng)⊙O 運(yùn)動至與直角邊AC相切時,求此時⊙O 的半徑r的長;
(2)試求⊙O 的半徑r的最小值.
【答案】(1)(2)
【解析】
(1)由勾股定理先求出AB的值,根據(jù)切線長定理得出AP=AC,求出BP的長,再利用△ACB∽△OPB對應(yīng)邊成比例得出圓的半徑.
(2)先作出⊙O最大半徑時的圖,結(jié)合三角函數(shù)計算r的值.
(1)連接OP,
在Rt△ACB中,AC=3,BC=4,
∴AB===5,
∵AC,AP都是圓的切線,
∴AP=AC=3,
∴PB=2,
∵∠ACB=∠OPB=90°,∠B=∠B,
∴△ACB∽△OPB,
∴ ,
∴ ,
∴r= .
(2)如圖,當(dāng)點(diǎn)P與點(diǎn)B重合時,⊙O的半徑最大,此時點(diǎn)O在BC的垂直平分線上,
過點(diǎn)O作OD⊥BC于點(diǎn)D,則BD=BC,
∵AB是切線,
∴∠ABO=90°,
∴∠ABC+∠OBD=∠BOD+∠OBD=90°,
∴∠ABC=∠BOD,
∴sin∠BOD= sin∠ABC===,
∴OB=,
即半徑的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,把一個直角三角尺ACB繞著30°角的頂點(diǎn)B順時針旋轉(zhuǎn),使得點(diǎn)A與CB的延長線上的點(diǎn)E重合.
(1)三角尺旋轉(zhuǎn)了 度。
(2)連接CD,試判斷△CBD的形狀;
(3)求∠BDC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場學(xué)校積極開展陽光體育活動,組織了九年級學(xué)生定點(diǎn)投籃,規(guī)定每人投籃3次.現(xiàn)對九年級(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計,繪制成如下的兩幅統(tǒng)計圖,根據(jù)圖中提供的信息,回答下列問題.
(1)求出九年級(1)班學(xué)生人數(shù);
(2)補(bǔ)全兩個統(tǒng)計圖;
(3)求出扇形統(tǒng)計圖中3次的圓心角的度數(shù);
(4)若九年級有學(xué)生200人,估計投中次數(shù)在2次以上(包括2次)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊BC為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D作⊙O的切線交AB于點(diǎn)E.
(1)如圖1,若∠ABC=90°,求證:OE∥AC;
(2)如圖2,已知AB=AC,若sin∠ADE=, 求tanA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E為CD上一點(diǎn),連接AE,BD,且AE,BD交于點(diǎn)F,若EF:AF=2:5,求S△DEF:S四邊形EFBC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個頂點(diǎn)分別在邊AB、AC上.
(1)若這個矩形是正方形,那么邊長是多少?
(2)當(dāng)PQ的值為多少時,這個矩形面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點(diǎn)的橫坐標(biāo), 縱坐標(biāo)的對應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法正確的是 .
①拋物線與軸的一個交點(diǎn)為; ②拋物線與軸的交點(diǎn)為;
③拋物線的對稱軸是:直線; ④在對稱軸左側(cè)隨增大而增大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于A、B兩點(diǎn),其頂點(diǎn)P在折線C-D-E上移動,若點(diǎn)C、D、E的坐標(biāo)分別為(-1,4)、(3,4)、(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com