【題目】如圖,在RtABC中,∠ACB90°,以AC為直徑的OAB邊交于點D,過點DO的切線.交BC于點E

1)求證:BEEC

2)填空:若∠B30°,AC2,則DB   

當∠B   度時,以O,D,E,C為頂點的四邊形是正方形.

【答案】1)詳見解析;(2)①3;②45

【解析】

1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;

2)①由含30°角的直角三角形的性質得出AB,由勾股定理求出BC,再根據(jù)BD=BCcos30°計算即可;

②由等腰三角形的性質,得到ODA=∠A=45°,于是DOC=90°,然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結論.

1)證明:連接DO

∵∠ACB=90°,AC為直徑,

ECO的切線;

ED也為O的切線,

EC=ED,

∵∠EDO=90°,

∴∠BDE+∠ADO=90°,

∴∠BDE+∠A=90°

∵∠B+∠A=90°,

∴∠BDE=∠B,

BE=ED

BE=EC;

2)解:①∵∠ACB=90°B=30°,AC=2

AB=2AC=4,

BC=,

AC為直徑,

∴∠BDC=∠ADC=90°,

BD=BCcos30°=3

故答案為:3

B=45°時,四邊形ODEC是正方形,

理由如下:

∵∠ACB=90°,

∴∠A=45°,

OA=OD,

∴∠ADO=45°

∴∠AOD=90°,

∴∠DOC=90°,

∵∠ODE=90°,

四邊形DECO是矩形,

OD=OC

矩形DECO是正方形.

故答案為:45

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關系圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:

1)他們都行駛了18千米;

2)甲在途中停留了0.5小時;

3)乙比甲晚出發(fā)了0.5小時;

4)相遇后,甲的速度小于乙的速度;

5)甲、乙兩人同時到達目的地

其中符合圖象描述的說法有(

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù))的圖象與軸交于兩點,與軸相交于點.連結兩點的坐標分別為、,且當時二次函數(shù)的函數(shù)值相等.

1)求實數(shù)的值;

2)若點同時從點出發(fā),均以每秒1個單位長度的速度分別沿邊運動,其中一個點到達終點時,另一點也隨之停止運動.當運動時間為秒時,連結,將沿翻折,點恰好落在邊上的處,求的值及點的坐標;

3)在(2)的條件下,二次函數(shù)圖象的對稱軸上是否存在點,使得以為項點的三角形與相似?如果存在,請求出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c的圖象如圖,其對稱軸x=﹣1,給出下列結果:b24ac;abc0;③2a+b0ab+c0;⑤3a+c0.其中正確結論的序號是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為(  )

A. ,-1) B. (2,﹣1) C. (1,- D. (﹣1,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:直線y=x﹣3與x軸、y軸分別交于點A、B,拋物線y=x2+bx+c經(jīng)過點A、B,且交x軸于點C.

(1)求拋物線的解析式;

(2)點P為拋物線上一點,且點P在AB的下方,設點P的橫坐標為m.

試求當m為何值時,PAB的面積最大;

PAB的面積最大時,過點P作x軸的垂線PD,垂足為點D,問在直線PD上否存在點Q,使QBC為直角三角形?若存在,直接寫出符合條件的Q的坐標若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校門口豎著“前方學校,減速慢行”的交通指示牌CD,數(shù)學“綜合與實踐”小組的同學將“測量交通指示牌CD的高度”作為一項課題活動,他們定好了如下測量方案:

項目

內容

課題

測量交通指示牌CD的高度

測量示意圖

測量步驟

(1)從交通指示牌下的點M處出發(fā)向前走10 米到達A處;

(2)在點A處用量角儀測得∠DAM27°;

(3)從點A沿直線MA向前走10米到達B處;(4)在點B處用量角儀測得∠CBA18°.

請你幫助該小組同學根據(jù)上表中的測量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45,cos27°≈0.89,tan27°≈0.51sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用黑白棋子擺出下列一組圖形,根據(jù)規(guī)律可知.

(1)在第n個圖中,白棋共有   枚,黑棋共有   枚;

(2)在第幾個圖形中,白棋共有300枚;

(3)白棋的個數(shù)能否與黑棋的個數(shù)相等?若能,求出是第幾個圖形,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與計算,請閱讀以下材料,并完成相應的問題.

角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則.下面是這個定理的部分證明過程.

證明:如圖2,過CCEDA.交BA的延長線于E.…

任務:(1)請按照上面的證明思路,寫出該證明的剩余部分;

2)填空:如圖3,已知RtABC中,AB3,BC4,∠ABC90°,AD平分∠BAC,則△ABD的周長是   

查看答案和解析>>

同步練習冊答案