【題目】已知在平面直角坐標(biāo)系xOy中,拋物線(b為常數(shù))的對(duì)稱軸是直線x=1.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)A(8,m)在該拋物線上,它關(guān)于該拋物線對(duì)稱軸對(duì)稱的點(diǎn)為A',求點(diǎn)A'的坐標(biāo);
(3)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在如圖5所示的平面直角坐標(biāo)系內(nèi)描點(diǎn),畫出該拋物線.
【答案】(1);(2)(-6,49);(3)答案見解析.
【解析】
(1)由對(duì)稱軸為,即可求出b的值,然后代入即可;
(2)把代入解析式,求出m,利用拋物線的對(duì)稱軸性質(zhì),即可得到點(diǎn)坐標(biāo);
(3)選取對(duì)稱軸左右兩邊的幾個(gè)整數(shù),計(jì)算出函數(shù)值,然后畫出拋物線即可.
解:(1)∵對(duì)稱軸為,
∴.
∴;
∴拋物線的表達(dá)式為.
(2)∵點(diǎn)A(8,m)在該拋物線的圖像上,
∴當(dāng)x=8時(shí),.
∴點(diǎn)A(8,49).
∴ 點(diǎn)A(8,49)關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)A'的坐標(biāo)為(-6,49).
(3)列表,如下:
拋物線圖像如下圖:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有、兩個(gè)不透明的盒子,盒中裝有紅色、黃色、藍(lán)色卡片各1張,盒中裝有紅色、黃色卡片各1張,這些卡片除顏色外都相同.現(xiàn)分別從、兩個(gè)盒子中任意摸出一張卡片.
(1)從盒中摸出紅色卡片的概率為______;
(2)用畫樹狀圖或列表的方法,求摸出的兩張卡片中至少有一張紅色卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)為x軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=(x>0)的圖象與AB相交于點(diǎn)D.與BC相交于點(diǎn)E,且BD=3,AD=6,△ODE的面積為15,若動(dòng)點(diǎn)P在x軸上,則PD+PE的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行,某自行車店在銷售某型號(hào)自行車時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號(hào)自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.
(1)求該型號(hào)自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?
(2)若該型號(hào)自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出50輛;若每輛自行車每降價(jià)20元,每月可多售出5輛,求該型號(hào)自行車降價(jià)多少元時(shí),每月可獲利30000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汕頭國(guó)際馬拉松賽事設(shè)有“馬拉松(公里)”,“半程馬拉松(公里)”,“迷你馬拉松(公里)”三個(gè)項(xiàng)目,小紅和小青參加了該賽事的志愿者服務(wù)工作,組委會(huì)將志愿者隨機(jī)分配到三個(gè)項(xiàng)目組.
(1)小紅被分配到“馬拉松(公里)”項(xiàng)目組的概率為___________.
(2)用樹狀圖或列表法求小紅和小青被分到同一個(gè)項(xiàng)目組進(jìn)行志愿服務(wù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖1,平面直角坐標(biāo)系中,直線分別與軸、軸交于點(diǎn),.雙曲線與直線交于點(diǎn).
(1)求的值;
(2)在圖1中以線段為邊作矩形,使頂點(diǎn)在第一象限、頂點(diǎn)在軸負(fù)半軸上.線段交軸于點(diǎn).直接寫出點(diǎn),,的坐標(biāo);
(3)如圖2,在(2)題的條件下,已知點(diǎn)是雙曲線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的平行線分別交線段,于點(diǎn),.
請(qǐng)從下列,兩組題中任選一組題作答.我選擇組題.
A.①當(dāng)四邊形的面積為時(shí),求點(diǎn)的坐標(biāo);
②在①的條件下,連接,.坐標(biāo)平面內(nèi)是否存在點(diǎn)(不與點(diǎn)重合),使以,,為頂點(diǎn)的三角形與全等?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.
B.①當(dāng)四邊形成為菱形時(shí),求點(diǎn)的坐標(biāo);
②在①的條件下,連接,.坐標(biāo)平面內(nèi)是否存在點(diǎn)(不與點(diǎn)重合),使以,,為頂點(diǎn)的三角形與全等?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a、b、c是常數(shù),a<0)經(jīng)過點(diǎn)A(-1,0)、B(3,0),頂點(diǎn)為C,則下列說法正確的個(gè)數(shù)是( )
①當(dāng)-1<x<3時(shí),ax2+bx+c>0;②當(dāng)△ABC是直角三角形,則a=- ;
③若m≤x≤m+3時(shí),二次函數(shù)y=ax2+bx+c的最大值為am2+bm+c,則m≥3.
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖像如圖所示,它的對(duì)稱軸為直線,與軸交點(diǎn)的橫坐標(biāo)分別為,,且.下列結(jié)論中:①;②;③;④方程有兩個(gè)相等的實(shí)數(shù)根;⑤.其中正確的有( )
A.②③⑤B.②③C.②④D.①④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com