【題目】如圖,將一朵小花放置在平面直角坐標系中第三象限內(nèi)的甲位置,先將它繞原點O旋轉180°到乙位置,再將它向下平移2個單位長到丙位置,則小花頂點A在丙位置中的對應點A′的坐標為( )

A.(3,1)
B.(1,3)
C.(3,﹣1)
D.(1,1)

【答案】C
【解析】解:根據(jù)圖示可知A點坐標為(﹣3,﹣1),
根據(jù)繞原點O旋轉180°橫縱坐標互為相反數(shù)
∴旋轉后得到的坐標為(3,1),
根據(jù)平移“上加下減”原則,
∴向下平移2個單位得到的坐標為(3,﹣1),
故選C.
【考點精析】本題主要考查了坐標與圖形變化-平移的相關知識點,需要掌握新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是⊙O的直徑,弦AB⊥CD于點G,直線EF與⊙O相切于點D,則下列結論中不一定正確的是(
A.AG=BG
B.AB∥EF
C.AD∥BC
D.∠ABC=∠ADC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形ABCD的頂點A的坐標為,點B的坐標為,點C在第一象限,對角線BDx軸平行直線x軸、y軸分別交于點E,將菱形ABCD沿x軸向左平移m個單位,當點D落在的內(nèi)部時不包括三角形的邊m的值可能是  

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人同時從相距90千米的A地前往B地,甲乘汽車,乙騎摩托車,甲到達B地停留半小時后返回A地.如圖是他們離A地的距離y(千米)與時間x(時)之間的函數(shù)關系圖象.
(1)求甲從B地返回A地的過程中,y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)若乙出發(fā)后2小時和甲相遇,求乙從A地到B地用了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y= x+1與拋物線y=ax2+bx﹣3交于A、B兩點,點A在x軸上,點B的縱坐標為3.點P是直線AB下方的拋物線上一動點(不與A、B點重合),過點P作x軸的垂線交直線AB于點C,作PD⊥AB于點D.

(1)求a、b及sin∠ACP的值;
(2)設點P的橫坐標為m;
①用含有m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連接PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積之比為9:10?若存在,直接寫出m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,E、F分別在AB,AD,CE=3,且∠ECF=45°,CF長為(

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,延長CB到點E,使BE=AD,連接DE交AB于點M.
(1)求證:△AMD≌△BME;
(2)若N是CD的中點,且MN=5,BE=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,對角線AC,BD相交于點O,給出下列四個條件:;;;,從中任選兩個條件,能使四邊形ABCD為平行四邊形的選法有  

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,D1是△ABC的邊AB上的一點,則圖中有哪幾個三角形?

(2)如圖2,D1,D2是△ABC的邊AB上的兩點,則圖中有哪幾個三角形?

(3)如圖3,D1,D2,…,D10是△ABC的邊AB上的10個點,則圖中共有多少個三角形?

查看答案和解析>>

同步練習冊答案