【題目】如圖,在x軸上有兩點(diǎn)A(m,0),B(n,0)(n>m>0),分別過點(diǎn)A,Bx軸的垂

線交拋物線yx2于點(diǎn)C,D,直線OC交直線BD于點(diǎn)E,直線OD交直線AC于點(diǎn)F.點(diǎn)E,F的縱坐標(biāo)分別為yEyF.

(1)特例探究(填空):

當(dāng)m=1,n=2時,yE=____,yF=____;

當(dāng)m=3,n=5時,yE=____,yF=____.

(2)歸納證明:對任意m,n(n>m>0),猜想yEyF的大小關(guān)系,并證明你的猜想.

(3)拓展應(yīng)用:連結(jié)EF,AE,當(dāng)S四邊形OFEB=3SOFE時,直接寫出mn的關(guān)系及四邊形OFEA的形狀.

【答案】(1) 當(dāng)m=1,n=2時,yE=__2__, =__2__;當(dāng)m=3,n=5時, =__15__,yF=__15__.

(2) =.證明見解析.

(3) n=2m,四邊形OFEA為平行四邊形.

【解析】分析:(1)已知A、B的坐標(biāo),根據(jù)拋物線的解析式,能得到C、D的坐標(biāo),進(jìn)而能求出直線OC、OD的解析式,也就能得出E、F兩點(diǎn)的坐標(biāo),再進(jìn)行比較即可.(2)已知A、B的坐標(biāo),根據(jù)拋物線的解析式,能得到C、D的坐標(biāo),進(jìn)而能求出直線OC、OD的解析式,也就能得出E、F兩點(diǎn)的坐標(biāo),再進(jìn)行比較即可.(3)四邊形OFEA的面積可分作△OEF、△OEA兩部分,根據(jù)給出的四邊形和△OFE的面積比例關(guān)系,能判斷出EF、OA的比例關(guān)系,進(jìn)而得出m、n的比例關(guān)系,再對四邊形OFEA的形狀進(jìn)行判定.

本題解析:

(1) 當(dāng)m=1,n=2時,yE=__2__,yF=__2__;當(dāng)m=3,n=5時,yE=__15__,yF=__15__.

(2)∵點(diǎn)C為拋物線yx2上的點(diǎn),ACx軸,∴xCxAm,∴點(diǎn)C(mm2).

易求得直線yOCmx,

又∵xEn,∴yEmn.

同理,點(diǎn)D(nn2),易求得直線yODnx,

yFnmmn.∴yEyF.

(3)∵yEyFAFx軸,BEx軸,

AFBE,AFBE,

∴四邊形ABEF為平行四邊形,

EFOB,EFABnm.

S四邊形OFEB (nmnyE (2nmyE,SOFE (nmyE.

S四邊形OFEB=3SOFE

(2nmyE=3× (nmyE,

∴2nm=3(nm),∴n=2m.

此時EFnm=2mmmOA,

EF平行且等于OA,∴四邊形OFEA為平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,正確的有(

A.a3+a2a5B.2a3a22a6

C.(﹣2a324a6D.a8÷a2a4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:(x+y2=12,(xy2=4,則x2+3xy+y2的值為( 。

A.8B.10C.12D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥CD,分別探究下面四個圖形中∠APC和∠PAB、∠PCD的關(guān)系,請從你所得四個關(guān)系中選出任意一個,說明你探究的結(jié)論的正確性.

(1)
(2);
(3)
(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2(a≠0)與直線y=4x-3交于點(diǎn)A(m,1).

(1)求點(diǎn)A的坐標(biāo)及拋物線的函數(shù)表達(dá)式.(2)寫出拋物線的開口方向、頂點(diǎn)坐標(biāo)和對稱軸.

(3)寫出拋物線yax2與直線y=4x-3的另一個交點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式成立的是( )

A.(-x-1)2=(x-1)2B.(-x-1)2=(x+1)2

C.(-x+1)2=(x+1)2D.(x+1)2=(x-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程與不等式(組)
(1) +1<x﹣3;
(2) +3= ;
(3)解不等式組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+1的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,A(1,2)點(diǎn)的橫坐標(biāo)乘-1,縱坐標(biāo)不變,得到A點(diǎn),則AA的關(guān)系是( )

A.關(guān)于x軸對稱 B.關(guān)于y軸對

C.關(guān)于原點(diǎn)對稱 D.將A點(diǎn)向x軸負(fù)方向平移一個單位

查看答案和解析>>

同步練習(xí)冊答案