【題目】如圖,已知∠1=∠BDC,∠2+∠3=180°.
(1) 請你判斷DA與CE的位置關(guān)系,并說明理由;
(2) 若DA平分∠BDC,CE⊥AE于點(diǎn)E,∠1=70°,試求∠FAB的度數(shù).
【答案】(1)DA∥C E,理由見解析;(2)55°.
【解析】
(1)根據(jù)平行線的性質(zhì)推出AB∥CD,推出∠2=∠ADC,求出∠ADC+∠3=180°,根據(jù)平行線的判定推出即可;
(2)求出∠ADC度數(shù),求出∠2=∠ADC=35°,∠FAD=∠AEC=90°,代入∠FAB=∠FAD∠2求出即可.
(1)解:DA∥C E.
理由如下:∵∠1=∠BDC,∴AB∥CD. ∴∠2=∠ADC.
又∵∠2+∠3=180°,∴∠ADC+∠3=180°. ∴DA∥CE.
(2)解:∵DA平分∠BDC,∴∠ADC =∠BDC =∠1 =×70°=35°.
∴∠2=∠ADC=35°.
∵CE⊥AE,AD∥EC, ∴∠FAD=∠AEC=90°.
∴∠FAB=∠FAD-∠2 = 90°-35°= 55°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開展“創(chuàng)衛(wèi)”活動,某校倡議學(xué)生利用雙休日在“人民公園”參加義務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動時(shí)間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息回答下列問題:
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求抽查的學(xué)生勞動時(shí)間的眾數(shù)、中位數(shù);
(3)電視臺要從參加義務(wù)勞動的學(xué)生中隨機(jī)抽取1名同學(xué)采訪,抽到時(shí)參加義務(wù)勞動的時(shí)間為2小時(shí)的同學(xué)概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把八個等圓按相鄰兩兩外切擺放,其圓心連線構(gòu)成一個正八邊形,設(shè)正八邊形內(nèi)側(cè)八個扇形(無陰影部分)面積之和為S1 , 正八邊形外側(cè)八個扇形(有陰影部分)面積之和為S2 , 則 =( )
A.
B.
C.
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,點(diǎn)A(1,8),B(1,6),C(7,6).
(1)請直接寫出點(diǎn)D的坐標(biāo);
(2)連接線段OB,OD,BD,請求出△OBD的面積;
(3)若長方形ABCD以每秒1個單位長度的速度向下運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒,是否存在某一時(shí)刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上的兩點(diǎn)A、B所表示的數(shù)分別是a和b,O為數(shù)軸上的原點(diǎn),如果有理數(shù)a,b滿足
(1)求a和b的值;
(2)若點(diǎn)P是一個動點(diǎn),以每秒5個單位長度的速度從點(diǎn)A出發(fā),沿?cái)?shù)軸向右運(yùn)動,請問經(jīng)過多長時(shí)間,點(diǎn)P恰巧到達(dá)線段AB的三等分點(diǎn)?
(3)若點(diǎn)C是線段AB的中點(diǎn),點(diǎn)M以每秒3個單位長度的速度從點(diǎn)C開始向右運(yùn)動,同時(shí)點(diǎn)P以每秒5個單位長度的速度從點(diǎn)A出發(fā)向右運(yùn)動,點(diǎn)N以每秒4個單位長度的速度從點(diǎn)B開始向左運(yùn)動,點(diǎn)P與點(diǎn)M之間的距離表示為PM,點(diǎn)P與點(diǎn)N之間的距離表示為PN,是否存在某一時(shí)刻使得PM+PN=12?若存在,請求出此時(shí)點(diǎn)P表示的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一根長米的木棒(AB),斜靠在與地面(OM)垂直的墻(ON)上,與地面的傾斜角(∠ABO)為60°.當(dāng)木棒A端沿墻下滑至點(diǎn)A′時(shí),B端沿地面向右滑行至點(diǎn)B′.
(1)求OB的長;
(2)當(dāng)AA′=1米時(shí),求BB′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計(jì)劃再一次性購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購進(jìn)A型電腦60臺,若商店保持同種電腦的售價(jià)不變,請你根據(jù)以上信息,設(shè)計(jì)出使這100臺電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com