【題目】如圖,在△ABC中,AB=AC,以AC邊為直徑作⊙O交BC邊于點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)E,ED、AC的延長線交于點(diǎn)F.

(1)求證:EF是⊙O的切線;

(2)若EB=,且sin∠CFD=,求⊙O的半徑與線段AE的長.

【答案】(1)證明見解析;(2)r=,AE=6.

【解析】

試題分析:(1)連結(jié)OD,如圖,由AB=AC得到∠B=∠ACD,由OC=OD得到∠ODC=∠OCD,則∠B=∠ODC,于是可判斷OD∥AB,然后利用DE⊥AB得到OD⊥EF,然后根據(jù)切線的判定定理得到結(jié)論;

(2)在Rt△ODF利用正弦的定義得到sin∠OFD==,則可設(shè)OD=3x,OF=5x,所以AB=AC=6x,AF=8x,在Rt△AEF中由于sin∠AFE=,可得到AE=,接著表示出BE得到,解得x=,于是可得到AE和OD的長.

試題解析:(1)連結(jié)OD,如圖,∵AB=AC,∴∠B=∠ACD,∵OC=OD,∴∠ODC=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥EF,∴EF是⊙O的切線;

(2)在Rt△ODF,sin∠OFD==,設(shè)OD=3x,則OF=5x,∴AB=AC=6x,AF=8x,在Rt△AEF中,∵sin∠AFE==,∴AE==,∵BE=AB﹣AE=6x﹣=,∴,解得x=,∴AE==6,OD==,即⊙O的半徑長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD(凸四邊形)中, AB=AD=BC,∠BAD=90°,連結(jié)對角線 AC,當(dāng)△ACD為等腰三角形時(shí),則∠BCD的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=﹣ , 下列結(jié)論錯(cuò)誤的是( 。
A.當(dāng)x>0時(shí),y隨x的增大而增大
B.當(dāng)x<0時(shí),y隨x的增大而增大
C.當(dāng)x=1時(shí)的函數(shù)值大于x=﹣1時(shí)的函數(shù)值
D.在函數(shù)圖象所在的象限內(nèi),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題:探索發(fā)現(xiàn)
(1)分解因式:①(1+x)+x(1+x)=()()=(2
②(1+x)+x(1+x) + x(1+x)2
③(1+x)+x(1+x) + x(1+x)2 + x(1+x)3
(2)根據(jù)(1)的規(guī)律,直接寫出多項(xiàng)式:(1+x) +x(1+x) + x(1+x)2+…+ x(1+x)2017分解因式的結(jié)果:
(3)變式: = .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地球上的陸地面積約為149000000km2 . 將149000000用科學(xué)記數(shù)法表示為(
A.1.49×106
B.1.49×107
C.1.49×108
D.1.49×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:

①abc>0,②4a+2b+c>0,<8a,<a<⑤b>c.

其中含所有正確結(jié)論的選項(xiàng)是(

A.①③ B.①③④ C.②④⑤ D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a的值使得x2+4x+a=(x+2)2﹣1成立,則a的值為(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,對稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點(diǎn),拋物線與x軸的另一交點(diǎn)為A

(1)求拋物線的解析式;

(2)若點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),設(shè)四邊形COBP的面積為S,求S的最大值;

(3)如圖2,若M是線段BC上一動點(diǎn),在x軸是否存在這樣的點(diǎn)Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案