【題目】我為武漢加油征文活動中,學校計劃對獲得一、二等獎的學生分別獎勵一臺計算器,一個考試包.已知購買臺計算器和個考試包共元,購買臺計算器和個考試包共元.

1)計算器、考試包的單價分別為多少元?

2)經(jīng)與商家協(xié)商,購買計算器超過臺時,每增加一臺,單價降低元;超過臺,均按購買臺的單價銷售,考試包一律按原價銷售,學校計劃獎勵一、等獎學生共計人,其中一等獎的人數(shù)不少于人,且不超過人,這次獎勵一等獎學生多少人時,購買獎品金額最少,最少為多少元?

【答案】(1)計算器、考試包的單價分別為元、元;(2)當一等獎人數(shù)為時花費最少,最少為元.

【解析】

根據(jù)題意列出二元一次方程組解出即可;

由題意列出總金額與單價和數(shù)量的函數(shù)關系,再分別討論30-5050-60的金額進行對比.

解:(1)設計算器、考試包的單價分別為元、元.

根據(jù)題意可得,

解得

答:計算器、考試包的單價分別為元、元.

2)設計算器單價為元,購買數(shù)量為臺,支付計算器和考試包總金額為元.

①當時,

時,,當時,,

時,

②當時,,,,

時,的最小值為元.

當一等獎人數(shù)為時花費最少,最少為元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtΔABCC90°,ABC30°ΔABC繞點C順時針旋轉得ΔA1B1C,當A1落在AB上時,連接B1B,取B1B的中點D,連接A1D,則的值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.

1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.

2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校心靈信箱的設立,為師、生之間的溝通開設了一個書面交流的渠道.為了解九年級學生對心靈信箱開通兩年來的使用情況,某課題組對該校九年級全體學生進行了一次問卷調查,并根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖.

根據(jù)圖表,解答以下問題:

1)該校九年級學生共有   人;

2)學生調查結果扇形統(tǒng)計圖中,扇形D的圓心角度數(shù)是   

3)請你補充條形統(tǒng)計圖;

4)根據(jù)調查結果可以推斷:兩年來,該校九年級學生通過心靈信箱投遞出的信件總數(shù)至少有   封.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過點A(0,6),點B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經(jīng)過拋物線y=x2+bx+c的頂點P,且l1與l2相交于點C,直線l2與x軸、y軸分別交于點D、E.若把拋物線上下平移,使拋物線的頂點在直線l2上(此時拋物線的頂點記為M),再把拋物線左右平移,使拋物線的頂點在直線l1上(此時拋物線的頂點記為N).

(1)求拋物y=x2+bx+c線的解析式.

(2)判斷以點N為圓心,半徑長為4的圓與直線l2的位置關系,并說明理由.

(3)設點F、H在直線l1上(點H在點F的下方),當△MHF與△OAB相似時,求點F、H的坐標(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點E是邊AD的中點,以EC為邊作正方形CEFG,則點D與點F之間的距離等于________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)的圖象上,ABx軸交于點EBE:AE=1:2.若點B的坐標為(-2,1),則k的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在初中數(shù)學學習階段,我們常常會利用一些變形技巧來簡化式子,解答問題.

材料一:在解決某些分式問題時,倒數(shù)法是常用的變形技巧之一.所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運用約分化簡,以達到計算目的.

例:已知:,求代數(shù)式的值.

解:∵,∴

,∴,∴

材料二:在解決某些連等式問題時,通常可以引入?yún)?shù)“k”,將連等式變成幾個值為k的等式,這樣就可以通過適當變形解決問題.

例:若2x3y4z,且xyz0,求的值.

解:令2x3y4zkk0

,,,∴

根據(jù)材料回答問題:

1)已知,則   ;

2)解分式方程組:;

3)若,x0,y0,z0,且abc5,求xyz的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個三角形紙板能完全重合,,,將繞點從重合位置開始,按逆時針方向旋轉,邊,分別與,交于點,(點不與點重合),點的內心,若,點運動的路徑為,則圖中陰影部分的面積為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案