【題目】如圖AB⊙O的切線,切點(diǎn)為BAO⊙O于點(diǎn)C,過(guò)點(diǎn)CDC⊥OA,交AB于點(diǎn)D.

(1)求證:∠CDO∠BDO;

(2)∠A30°⊙O的半徑為4,求陰影部分的面積(結(jié)果保留π)

【答案】1)見(jiàn)解析 (2

【解析】

(1)證明:AB⊙O于點(diǎn)B,

∴OB⊥AB,即∠B90°.

∴DC⊥OA,∴∠OCD90°.

Rt△CODRt△BOD中,ODOD,OBOC,

∴Rt△COD≌Rt△BOD.

∴∠CDO∠BDO.

(2)Rt△ABO中,∠A30°,OB4

∴∠BOC60°

∵Rt△COD≌Rt△BOD,

∴∠BOD30°,

∴BDOB·tan 30°.

∴S四邊形OCDB2SOBD×4×.

∵∠BOC60°,

∴S扇形OBC.

∴S陰影S四邊形OCDBS扇形OBC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC的平分線與BC的垂直平分線相交于點(diǎn)D,DEAB,DFAC,垂足分別為EF,AB6AC3,則BE長(zhǎng)度為(

A.1B.1.5C.2D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘漁船正自西向東航行追趕魚(yú)群,在A處望見(jiàn)島C在船的北偏東60°方向,前進(jìn)20海里到達(dá)B處,此時(shí)望見(jiàn)島C在船的北偏東30°方向,以島C為中心的12海里內(nèi)為軍事演習(xí)的危險(xiǎn)區(qū).請(qǐng)通過(guò)計(jì)算說(shuō)明:如果這艘漁船繼續(xù)向東追趕魚(yú)群是否有進(jìn)入危險(xiǎn)區(qū)的可能.(參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市準(zhǔn)備購(gòu)進(jìn)甲、乙兩種品牌的文具盒,甲、乙兩種玩具盒的進(jìn)價(jià)和售價(jià)如下表,預(yù)計(jì)購(gòu)進(jìn)乙品牌文具盒的數(shù)量y(個(gè))與甲品牌玩具盒數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖所示.

進(jìn)價(jià)(元)

15

30

售價(jià)(元)

20

38

1yx之間的函數(shù)關(guān)系式是   

2)若超市準(zhǔn)備用不超過(guò)6000元購(gòu)進(jìn)甲、乙兩種文具盒,則至少購(gòu)進(jìn)多少個(gè)甲種文具盒?

3)在(2)的條件下,寫出銷售所得的利潤(rùn)W(元)與x(個(gè))之間的關(guān)系式,并求出獲得的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣,1955年希臘發(fā)型了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成,它可以驗(yàn)證勾股定理.在如圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQO使得∠O=90°,點(diǎn)Q在在直角坐標(biāo)系y軸正半軸上,點(diǎn)P在x軸正半軸上,點(diǎn)O與原點(diǎn)重合,∠OQP=60°,點(diǎn)H在邊QO上,點(diǎn)D、E在邊PO上,點(diǎn)G、F在邊PQ上,那么點(diǎn)P坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBAAC于點(diǎn)D,DEABE.若△ADE的周長(zhǎng)為8cmAB_____ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD與四邊形DEFG都是正方形,設(shè)AB =a, DG = b(a> b)

1)寫出AG的長(zhǎng)度(用含字母a、b的式子表示)

2)觀察圖形,請(qǐng)你用兩種不同的方法表示圖形中陰影部分的面積,此時(shí),你能獲得一個(gè)因式分解公式,請(qǐng)將這個(gè)公式寫出來(lái);

3)如果正方形ABCD的邊長(zhǎng)比正方形DEFG的邊長(zhǎng)多2cm,它們的面積相差20cm2,試?yán)?/span>(2)中的公式,a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在任意四邊形ABCD中,M,NP,Q分別是AB,BC,CDDA上的點(diǎn),對(duì)于四邊形MNPQ的形狀,以下結(jié)論中,錯(cuò)誤的是  

A. 當(dāng)M,N,P,Q是各邊中點(diǎn),四邊MNPQ一定為平行四邊形

B. 當(dāng)M,N,P,Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為正方形

C. 當(dāng)M,N、PQ是各邊中點(diǎn),且時(shí),四邊形MNPQ為菱形

D. 當(dāng)M,N、P、Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC的周長(zhǎng)為18cm,BDAC邊上的中線,動(dòng)點(diǎn)P,Q分別在線段BCBD上運(yùn)動(dòng),連接CQ,PQ,當(dāng)BP長(zhǎng)為_____cm時(shí),線段CQ+PQ的和為最小.

查看答案和解析>>

同步練習(xí)冊(cè)答案