【題目】如圖,D為Rt△ABC斜邊AB上一點,以CD為直徑的圓分別交△ABC三邊于E、F、G三點,連接FE,F(xiàn)G.
(1)求證:∠EFG=∠B;
(2)若AC=2BC=4,D為AE的中點,求FG的長.
【答案】(1)證明見解析;(2)4
【解析】試題分析:(1)連接EC,則∠AEC=90°,由同角的余角相等即可得出∠B=∠ECA,再根據(jù)圓周角定理即可得出∠ECA=∠EFG,由此即可證出∠EFG=∠B;
(2)由AC、BC的長度利用勾股定理即可求出AB的長度,結(jié)合面積法即可得出CE的長度,由正切即可得出AE的長度,再利用勾股定理可求出CD的長度,連接FD、DG,由矩形的判定定理即可證出四邊形FCGD為矩形,利用矩形的性質(zhì)即可得出FG=CD,此題得解.
試題解析:(1)證明:連接EC,如圖1所示.
∵CD為直徑,
∴∠AEC=90°,
∴∠BCE+∠B=90°.
∵∠BCE+∠ECA=90°,
∴∠B=∠ECA.
又∵∠ECA=∠EFG,
∴∠EFG=∠B;
(2)解:在Rt△BCA中,AC=4,BC=2,
∴AB==10.
∵BCAC=ABCE,
∴CE=4.
∵tan∠A=,
∴AE=2CE=8.
在Rt△DCG中,CE=4,ED=AE=4,
∴CD==4.
連接FD、DG,如圖2所示.
∵CD是直徑,
∴∠CFD=∠CGD=90°,
又∵∠FCG=90°,
∴四邊形FCGD為矩形,
∴FG=CD=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購買A、B兩種獎品,獎勵成績優(yōu)異的同學(xué).已知購買1件A獎品和1件B獎品共需18元;購買30件A獎品和20件B獎品共需480元.
(1)A、B兩種獎品的單價分別是多少元?
(2)如果學(xué)校購買兩種獎品共100件,總費用不超過850元,那么最多可以購買A獎品多少件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個三位數(shù),如果把它的個位數(shù)字與百位數(shù)字交換位置,那么所得的新數(shù)比原數(shù)小99,且各位數(shù)字之和為14,十位數(shù)字是個位數(shù)字與百位數(shù)字之和.求這個三位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級學(xué)生準(zhǔn)備去購買《英漢詞典》一書,此書標(biāo)價為20元,F(xiàn)A、B兩書店都有此書出售,A店按如下方法促銷:若只購一本,則按標(biāo)價銷售;若一次性購買多于一本,但不多出20本時,每多購一本,每本銷售價在標(biāo)價的基礎(chǔ)上優(yōu)惠2%(例如買兩本,每本價優(yōu)惠2%;買三本價優(yōu)惠4%,以此類推);若購買多于20本時,每本售價為12元,B店一律按標(biāo)價的7折銷售;
(1)試分別寫出在兩書店購此書的總價yA、yB與購本書數(shù)x之間的函數(shù)關(guān)系式.
(2)若某班一次性購買多于20本時,那么去哪家書店購買更合算?為什么?若要一次性購買不多于20本時,先寫出y(y=yA-yB)與購書本數(shù)x之間的函數(shù)關(guān)系式,并在圖中畫出其函數(shù)圖象,再利用函數(shù)圖象分析去哪家書店購買更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=m是平行于X軸的直線,將拋物線y=-x2-4x在直線y=m上側(cè)的部分沿直線 y=m翻折,翻折后的部分與沒有翻折的部分組成新的函數(shù)圖像,若新的函數(shù)圖像剛好與 直線y=-x有3個交點,則滿足條件的m 的值為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.
如:
因此,4,12,20這三個數(shù)都是神秘數(shù).
(1)28和2012這兩個數(shù)是不是神秘數(shù)?為什么?
(2)設(shè)兩個連續(xù)偶數(shù)為和(其中為非負(fù)整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù),請說明理由.
(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4 m時,拱頂(拱橋洞的最高點)離水面2 m,當(dāng)水面下降1 m時,水面的寬度為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù) y=kx+b(k≠0)的圖象經(jīng)過點(-1,-5),(2,1)兩點.
(1)求 k 和 b 的值;
(2)一次函數(shù) y=kx+b 圖象與坐標(biāo)軸所圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,△ABC的頂點均在格點上,直線a為對稱軸,A和C都在對稱軸上.
(1)△ABC以直線a為對稱軸作△AB1C;
(2)若∠BAC=30°,則∠BAB1=______°;
(3)求△ABB1的面積等于______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com