【題目】如圖,在直角坐標系中,拋物線與y軸交于點D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(點B在點A的右邊),頂點為C點,求直線BC的解析式;
(3)已知點P是直線BC上一個動點,
①當點P在線段BC上運動時(點P不與B、C重合),過點P作PE⊥y軸,垂足為E,連結(jié)BE.設(shè)點P的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點P,使得以點P為圓心,半徑為r的⊙P,既與拋物線的對稱軸相切,又與以點C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點P的坐標;如果不存在,請說明理由.
【答案】(1)c=3;(2);(3)①S=-x2+3x=-(x-)2+(1<x<3);當x=時,S取得最大值,最大值為;②存在點P1(),或P2(),此時r1=;點P3(),或P4(),此時r2=,理由見解析.
【解析】
(1)將點D(0,3)直接代入解析式即可;
(2)先求出頂點C坐標為(1,4),以及與x軸的交點坐標,即令y=0時,得到點B(3,0)代入一次函數(shù)解析式即可求得答案;
(3)根據(jù)S=PE·OE,利用P點在線段BC上,可表示出PE,OE,得到S=,變形為頂點式后求出最大值即可.第②小問,根據(jù)兩圓內(nèi)切與外切進行分類討論,分別用r表示出CQ,PQ,CP的長度,再利用勾股定理即可求出r長度和P點坐標.
解:(1)∵將D(0,3)代入解析式
∴c=3
(2)由(1)知拋物線為:
y=-x2+2x+3,配方得y=-(x-1)2+4
∴頂點C坐標為(1,4)
令y=0,得x1=-1,x2=3
∴ B(3,0)
設(shè)直線BC解析式為:(),把B、C兩點坐標代入,
得解得.
∴直線BC解析式為
(3)①∵點P(x,y)在的圖象上,
∴PE=x,OE=-2x+6
∴s=PE·OE=
∴
.
∵x=符合1<x<3,
∴當x=時,S取得最大值,最大值為.
②答:存在.
如圖,設(shè)拋物線的對稱軸交x軸于點F,則CF=4,BF=2
過P作PQ⊥CF于Q,則Rt△CPQ∽Rt△CBF
∴,即
∴CQ=2r
當⊙P與⊙C外切時,CP=r+1
∵CQ2+PQ2=CP2
∴(2r)2+r2=(r+1)2
解得r=(r=舍去)
此時P1(),或P2()
當⊙P與⊙C內(nèi)切時,CP=r-1.
∵CQ2+PQ2=CP2
∴(2r)2+r2=(r-1)2
解得r=(r= 舍去)
此時P3(),或P4().
∴當r1=, r2=時,⊙P與⊙C相切.
點P的坐標為P1(),或P2(),
P3(),或P4().
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線的解析式為,且與軸交于點,直線經(jīng)過定點、,直線與交于點.
(1)求直線的解析式;
(2)求的面積;
(3)在軸上是否存在一點,使的周長最短?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,O是線段BC上一點,以O為圓心,OC為半徑作⊙O,AB與⊙O相切于點F,直線AO交⊙O于點E,D.
(1)求證:AO是△CAB的角平分線;
(2)若tan∠D=,AE=2,求AC的長.
(3)在(2)條件下,連接CF交AD于點G,⊙O的半徑為3,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(a≠0)的對稱軸為直線,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與軸交于點B.
(1)若直線經(jīng)過B,C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸上找一點M,使MA+MC的值最小,求點M的坐標;
(3)設(shè)P為拋物線的對稱軸上的一個動點,求使ΔBPC為直角三角形的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,BA=AD=DC,點E在CB延長線上,BE=AD,連接AC、AE.
⑴ 求證:AE=AC;
⑵ 若AB⊥AC, F是BC的中點,試判斷四邊形AFCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵下崗工人再就業(yè),某地市政府規(guī)定,企業(yè)按成本價提供產(chǎn)品給下崗人員自主銷售,成本價與出廠價之間的差價由政府承擔.老李按照政策投資銷售本市生產(chǎn)的一種兒童面條.已知這種兒童面條的成本價為每袋12元,出廠價為每袋16元,每天銷售量(袋)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)老李在開始創(chuàng)業(yè)的第1天將銷售單價定為17元,那么政府這一天為他承擔的總差價為多少元?
(2)設(shè)老李獲得的利潤為(元),當銷售單價為多少元時,每天可獲得最大利潤?
(3)物價部門規(guī)定,這種面條的銷售單價不得高于24元,如果老李想要每天獲得的利潤不低于216元,那么政府每天為他承擔的總差價最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電銷售商城電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元,每臺電冰箱的進價比每臺空調(diào)的進價多400元,商城用80000元購進電冰箱的數(shù)量與用64000元購進空調(diào)的數(shù)量相等.
求每臺電冰箱與空調(diào)的進價分別是多少?
(2)現(xiàn)在商城準備一次購進這兩種家電共100臺,設(shè)購進電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點A逆時針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應(yīng)求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com