3.計算:$\frac{1}{2}$$\sqrt{7}$+$\frac{2}{3}$$\sqrt{7}$-$\frac{3}{4}$$\sqrt{7}$.

分析 依據(jù)二次根據(jù)加減法則計算即可.

解答 解:原式=($\frac{1}{2}$+$\frac{2}{3}$-$\frac{3}{4}$)×$\sqrt{7}$=$\frac{5\sqrt{7}}{12}$.

點評 本題主要考查的是二次根式的加減,掌握二次根式的加減法則是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.解下列各題
(1)解方程組$\left\{\begin{array}{l}{\frac{y+1}{4}=\frac{x+2}{3}}\\{2x-3y=1}\end{array}\right.$
(2)因式分解:2m(x-y)2-20m(x-y)+50m
(3)化簡求值:(x+3)2-(x-1)(x-2),其中x=-$\frac{1}{3}$
(4)計算圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正確的是(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.(1)2x3y-8x2y2+8xy3
(2)$\left\{\begin{array}{l}{5x-4<3x}\\{\frac{2x-1}{3}≤1+\frac{5x+1}{2}}\end{array}\right.$
(3)解方程:$\frac{y-2}{y-3}$-2=$\frac{y}{y-3}$
(4)先化簡,再求值:若2x-3y=0,求$\frac{3y}{x+3y}$$-\frac{x}{3y-x}$$+\frac{18{y}^{2}}{{x}^{2}-9{y}^{2}}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.計算:$\frac{2y}{{3{x^2}}}•\frac{x^3}{{4{y^2}}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.有甲、乙兩個長方體形的蓄水池,將甲池中的水以每小時6立方米的速度注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(小時)之間的函數(shù)圖象如圖所示,結(jié)合圖象回答下列問題:
(1)求注水多長時間,乙蓄水池的深度是甲蓄水池的水的深度的2倍;
(2)求注水2小時時,乙蓄水池的水比甲蓄水池的水多多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.(1)因式分解:
①2x3-18x;
②(x2+2x)2+2(x2+2x)+1
③先因式分解,再求值:已知a+b=2,ab=2,求$\frac{1}{2}$a3b+a2b2+$\frac{1}{2}$ab3的值.
(2)先化簡,再求值:($\frac{3x}{x-1}$-$\frac{2x}{x+1}$)•$\frac{{x}^{2}-1}{x}$,其中x=$\sqrt{5}$-5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:(5$\sqrt{2}$-2$\sqrt{3}$)2-(3$\sqrt{2}$-$\sqrt{5}$)(3$\sqrt{2}$+$\sqrt{5}$).
(2)解方程:x(x+4)=8x+12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,已知某廣場菱形花壇ABCD的周長是24米,∠BAD=60°,則花壇對角線AC的長等于6$\sqrt{3}$米.

查看答案和解析>>

同步練習冊答案