【題目】計算:(﹣1)2017+3(tan60°)1﹣|1﹣ |+(3.14﹣π)0

【答案】解:原式=﹣1+ +1+1=1
【解析】原式利用乘方的意義,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及絕對值的代數(shù)意義計算即可得到結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游風(fēng)景區(qū),門票價格為a元/人,對團體票規(guī)定:10人以下(包括10人)不打折,10人以上超過10人部分打b.設(shè)團體游客人,門票費用為y元,yx之間的函數(shù)關(guān)系如圖所示.

(1)填空:a_______;b_________.

(2)請求出:當(dāng)x>10時,之間的函數(shù)關(guān)系式;

(3)導(dǎo)游小王帶A旅游團到該景區(qū)旅游,付門票費用2720元(導(dǎo)游不需購買門票),求A旅游團有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)公司生產(chǎn)的960件新產(chǎn)品,需要精加工后,才能投放市場,F(xiàn)有甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨加工完這批產(chǎn)品比乙工廠單獨加工完這批產(chǎn)品多用20天,而乙工廠每天比甲工廠多加工8件產(chǎn)品,公司需付甲工廠加工費用每天80元,乙工廠加工費用每天120元。

(1)求甲、乙兩個工廠每天各能加工多少件新產(chǎn)品。

(2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成;也可以由兩個廠家同時合作完成。在加工過程中,公司需派一名工程師每天到廠進行技術(shù)指導(dǎo),并負(fù)擔(dān)每天5元的誤餐補助費。 請你幫助公司選擇一種既省時又省錢的加工方案,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空或填寫理由.

(1)如圖甲,∵∠   =   (已知);

ABCD(   

(2)如圖乙,已知直線ab,3=80°,求∠1,2的度數(shù).

解:∵ab,(   

∴∠1=4(   

又∵∠3=4(   

3=80°(已知)

∴∠1=(   )(等量代換)

又∵∠2+3=180°

∴∠2=(   )(等式的性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABC的邊AB上一點,CEAB,DEAC于點F,若FA=FC.

(1)求證:四邊形ADCE是平行四邊形;

(2)AEEC,EF=EC=1,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2= 的圖象交于A、B兩點,已知當(dāng)x>1時,y1>y2;當(dāng)0<x<1時,y1<y2
(1)求一次函數(shù)的函數(shù)表達式;
(2)已知反比例函數(shù)在第一象限的圖象上有一點C到x軸的距離為2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·湖州)(本小題10分)

如圖,已知EF分別是□ABCD的邊BC、AD上的點,且BE=DF。

求證:四邊形AECF是平行四邊形;

BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距720km,一列快車和一列慢車都從甲地駛往乙地,慢車先行駛1小時后,快車才開始行駛.已知快車的速度是120km/h,慢車的速度是80km/h,快車到達乙地后,停留了20min,由于有新的任務(wù),于是立即按原速返回甲地.在快車從甲地出發(fā)到回到甲地的整個程中,與慢車相遇了兩次,這兩次相遇時間間隔是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,以點A(1,0)為圓心,以2為半徑的圓與x軸交于B,C兩點,與y軸交于D,E兩點.

(1)直接寫出B,C,D點的坐標(biāo);
(2)若B、C、D三點在拋物線y=ax2+bx+c上,求出這個拋物線的解析式及它的頂點坐標(biāo).
(3)若圓A的切線交x軸正半軸于點M,交y軸負(fù)半軸于點N,切點為P,∠OMN=30°,試判斷直線MN是否經(jīng)過B、C、D三點所在拋物線的頂點?說明理由.

查看答案和解析>>

同步練習(xí)冊答案