【題目】在菱形ABCD中,∠BAD=E為對角線AC上的一點(不與A,C重合),將射線EB繞點E順時針旋轉(zhuǎn)角之后,所得射線與直線AD交于F點.試探究線段EBEF的數(shù)量關(guān)系.

小宇發(fā)現(xiàn)點E的位置,的大小都不確定,于是他從特殊情況開始進行探究.

1)如圖1,當==90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EMADMENABN.由角平分線的性質(zhì)可知EM=EN,進而可得,并由全等三角形的性質(zhì)得到EBEF的數(shù)量關(guān)系為

2)如圖2,當=60°=120°時,

①依題意補全圖形;

②請幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請給出證明;若不成立,請舉出反例說明;

3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對一般的圖形進行了探究,設(shè)∠ABE=,若旋轉(zhuǎn)后所得的線段EFEB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請直接寫出角,,滿足的關(guān)系:

【答案】1EB=EF;(2)①補全圖形見解析;②結(jié)論依然成立EB=EF.證明見解析; 3°(當B的對稱點不為D時)或°(當B的對稱點為D時)

【解析】

(1)先證明ANEM是正方形,再證明,即可證得結(jié)果;

(2)①補全圖形如圖所示;

②證法1,用角平分線性質(zhì)得出EM=EN,再證明出,即可;

證法2,利用菱形的性質(zhì)直接出△ADE≌△ABE.即可得出結(jié)論;

(3)直接得出結(jié)論。

1EB=EF;

2)①補全圖形如圖所示;

②結(jié)論依然成立EB=EF

證法1:過點EEMAFMENABN

∵四邊形ABCD為菱形,

EMAF,ENAB

°,EM=EN

°,°

°°

°,

在△EFM與△EBN中,

∴△EFM ≌△EBN

EF=EB

證法2:連接ED

∵四邊形ABCD是菱形,

AD=AB,DAC=BAE

又∵AE=AE,

∴△ADE≌△ABE

ED=EB,∠ADE=ABE

又∵∠DAB=60°,∠BEF=120°

∴∠F+ABE=180°

又∵∠ADE+FDE=180°,

∴∠F=FDE

EF=ED

EF=EB

3°(當B的對稱點不為D時)或°(當B的對稱點為D時).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是半圓O上的一點,AB是⊙O的直徑,D的中點,作DEAB于點E,連接ACDE于點F,求證:AF=DF.

下面是小明的做法,請幫他補充完整(包括補全圖形)

解:補全半圓O為完整的⊙O,連接AD,延長DE交⊙O于點H(補全圖形)

D的中點,

.

DEAB,AB是⊙O的直徑,

)(填推理依據(jù))

∴∠ADF=FAD )(填推理依據(jù))

AF=DF )(填推理依據(jù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點從點開始沿邊向點的速度移動,點從點開始沿邊向點的速度移動.

1)如果分別從同時出發(fā),那么幾秒后,的面積等于

2)如果分別從同時出發(fā),的面積能否等于

3)如果分別從同時出發(fā),那么幾秒后,的長度等于?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在RtABC中,BCAC2,點MAC邊上一動點,連接BM,以CM為直徑的⊙OBMN,則線段AN的最小值為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是某公園一塊草坪上的自動旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個扇形.小濤同學想了解這種裝置能夠噴灌的草坪面積,他測量出了相關(guān)數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點的距離為18米,求這種裝置能夠噴灌的草坪面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將繞點順時針旋轉(zhuǎn)得到,使點的對應點恰好落在邊上,點的對應點為,連接.下列結(jié)論一定正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線x軸交于A-1,0),B3,0)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設(shè)點D的橫坐標為m0m3),連接CDBD,BC,AC,當△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,MN為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內(nèi)作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案