【題目】一次函數(shù)y=﹣2x+3的圖象不經(jīng)過(guò)的象限是( 。
A.第一象限
B.第二象限
C.第三象限
D.第四象限
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)為2cm,x,5cm的三條線段恰好能組成一個(gè)三角形,則x的取值最有可能是( )
A. 2cm B. 3cm C. 5cm D. 7cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A. 7a+a=7a2 B. a2·a3=a6 C. a3÷a=a2 D. (ab)2=ab2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線 與x軸、y軸相交于P、Q兩點(diǎn),與y=的圖像相交于A(-2,m)、B(1,n)兩點(diǎn),連接OA、OB. 給出下列結(jié)論: ①k1k2<0;②m+n=0; ③S△AOP= S△BOQ;④不等式k1x+b>的解集是x<-2或0<x<1,其中正確的結(jié)論是 ( )
A. ②③④ B. ①②③④ C. ③④ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.
當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn).
如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
如圖2,點(diǎn)A、B都在原點(diǎn)的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;
回答下列問(wèn)題:
(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是_______;
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離是___________,如果∣AB∣=2,那么x為____________;
(3)當(dāng)代數(shù)式∣x+1∣+∣x-2∣取最小值時(shí),相應(yīng)的x的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(﹣5)2000+(﹣5)2001等于( )
A.(﹣5)2000
B.(﹣5)2001
C.﹣5×(﹣5)2001
D.﹣4×(﹣5)2000
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若多項(xiàng)式2x2-3x+6的值為8,則多項(xiàng)式9-4x2+6x的值是( )
A. 13 B. 11 C. 5 D. -7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ABCD的對(duì)角線AC與BD交于點(diǎn)O,下列結(jié)論不正確的是( )
A.當(dāng)AB=BC時(shí),ABCD是菱形
B.當(dāng)AC⊥BD時(shí),ABCD是菱形
C.當(dāng)OA=OB時(shí),ABCD是矩形
D.當(dāng)∠ABD=∠CBD時(shí),ABCD是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,根據(jù)圖中數(shù)據(jù)完成填空,再按要求答題:
(1)sin2A1+sin2B1= . sin2A2+sin2B2= .sin2A3+sin2B3= ;
(2)觀察上述等式,猜想在Rt△ABC中,∠C=90°,都有sin2A+sin2B= ;
(3)如圖④,在Rt△ABC中,∠C=90°,∠A、∠B、 ∠C 的對(duì)邊分別是a、b、c,利用三角函數(shù)的定義和勾股定理,證明你的猜想;
(4)已知∠A+∠B =90°且sinA=,求sinB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com