【題目】圖象中所反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家.其中x表示時 間,y表示張強離家的距離.根據(jù)圖象提供的信息,以下四個說法錯誤的是( )

A. 體育場離張強家2.5千米

B. 張強在體育場鍛煉了15分鐘

C. 體育場離早餐店1.千米

D. 張強從早餐店回家的平均速度是3千米/小時

【答案】C

【解析】試題分析:A、由函數(shù)圖象可知,體育場離張強家2.5千米,故A選項正確;

B、由圖象可得出張強在體育場鍛煉30-15=15(分鐘),故B選項正確;

C、體育場離張強家2.5千米,體育場離早餐店2.5-1.5=1(千米),故C選項錯誤;

D、張強從早餐店回家所用時間為95-65=30(分鐘),距離為1.5km,

張強從早餐店回家的平均速度1.5÷0.5=3(千米/時),故D選項正確.

故選C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在菱形中,對角線,相交于點,

1)求證:四邊形是矩形;

2)若,,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,8個完全相同的小矩形拼成了一個大矩形,AB是其中一個小矩形的對角線,請在大矩形中完成下列畫圖,要求:僅用無刻度的直尺;保留必要的畫圖痕跡.

(1)在圖1中畫出一個45°的角,使點A或者點B是這個角的頂點,且AB為這個角的一邊.

(2)在圖2中畫出線段AB的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商廈進貨員預(yù)測一種應(yīng)季襯衫能暢銷市場,就用萬元購進這種襯衫,面市后果然供不應(yīng)求.商廈又用萬元購進第二批這種襯衫,所購數(shù)量是第一批進量的倍,但單價貴了.商廈銷售這種襯衫時每件定價元,最后剩下件按八折銷售,很快售完.在這兩筆生意中,商廈共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項活動課程以提升學(xué)生的體藝素養(yǎng),隨機抽取了部分學(xué)生對這三項活動的興趣情況進行了調(diào)查(每人從中只能選一項),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.

1)將條形統(tǒng)計圖補充完整;

2)本次抽樣調(diào)查的樣本容量是 ;

3)已知該校有1200名學(xué)生,請你根據(jù)樣本估計全校學(xué)生中喜歡剪紙的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“如圖1,在Rt△ABC中,∠ACB=90°,CD是△ABC的高,則△ACD與△CBD相似嗎?”于是,學(xué)生甲發(fā)現(xiàn)CD2=AD·BD也成立.

問題1:請你證明CD2=AD·BD;

學(xué)生乙從CD2=AD·BD中得出:可以畫出兩條已知線段的比例中項.

問題2:已知兩條線段AB、BCx軸上,如圖2:請你用直尺(無刻度)和圓規(guī)作出這兩條線段的比例中項.要求保留作圖痕跡,不要寫作法,最后指出所要作的線段.

學(xué)生丙也從CD2=AD·BD中悟出了矩形與正方形的等積作法.

問題3:如圖3,已知矩形ABCD,請你用直尺(無刻度)和圓規(guī)作出一個正方形BMNP,使得S正方形BMNP=S矩形ABCD.要求:保留作圖痕跡;簡要寫出作圖每個步驟的要點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“龜免賽跑”的故事同學(xué)們都非常熱悉,圖中的線段OD和折線OABC表示“龜兔賽跑時路程與時間的關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題.

(1)填空:折線OABC表示賽跑過程中_______(填“兔子”或“烏龜”)的路程與時間的關(guān)系,賽跑的全過程是___________米.

(2)兔子在起初每分鐘跑多少米?烏龜每分鐘爬多少米?

(3)烏龜用了多少分鐘追上了正在睡覺的兔子?

(4)兔子醒來假,以400米/分的速度跑向終點,結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,.點從點出發(fā)沿路徑向終點運動;點點出發(fā)沿路徑向終點運動.點分別以13的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過,.則點運動時間等于____________時,全等。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD相交于點O,OEOF分別是∠BOD、∠AOD的平分線。

(1)DOE的補角是___;

(2)若∠BOD=62°,求∠AOE和∠DOF的度數(shù);

(3)判斷射線OEOF之間有怎樣的位置關(guān)系?并說明理由。

查看答案和解析>>

同步練習冊答案