如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標系中,使直角邊OB、OD在x軸上.已知點A(1,2),過A、C兩點的直線分別交x軸、y軸于點E、F.拋物線y=ax2+bx+c經(jīng)過O、A、C三點.
(1)求該拋物線的函數(shù)解析式;
(2)點P為線段OC上一個動點,過點P作y軸的平行線交拋物線于點M,交x軸于點N,問是否存在這樣的點P,使得四邊形ABPM為等腰梯形?若存在,求出此時點P的坐標;若不存在,請說明理由.
(3)若△AOB沿AC方向平移(點A始終在線段AC上,且不與點C重合),△AOB在平移過程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
(1)y=x2+x;(2)(,);(3)
解析試題分析:(1)由拋物線y=ax2+bx+c經(jīng)過點O、A、C即可根據(jù)待定系數(shù)法求得拋物線解析式;
(2)設點P的橫坐標為t,由PN∥CD,可證得△OPN∽△OCD,根據(jù)相似三角形的性質可得PN=,則可得點P坐標為(t,),由點M在拋物線上可得M(t,t2+t),過M點作MG⊥AB于G,過P點作PH⊥AB于H,則AG=yA﹣yM=2﹣(t2+t)=t2﹣t+2,BH=PN=,當AG=BH時,四邊形ABPM為等腰梯形,即可得到關于t的方程,解出即可得到結果;
(3)如解答圖2,△AOB沿AC方向平移至△A′O′B′,A′B′交x軸于T,交OC于Q,A′O′交x軸于K,交OC于R.求得過A、C的直線為yAC=﹣x+3,可設點A′的橫坐標為a,則點A′(a,﹣a+3),易知△OQT∽△OCD,可得QT=,OH=2RH,即可得到點Q的坐標,從而表示出A′Q的長,先求出tan∠O′A′B′=tan∠OAB=,即可表示出KT、OK,過點R作RH⊥x軸于H,先表示出S關于a的函數(shù)關系式,再根據(jù)二次函數(shù)的性質即可求得結果.
(1)∵拋物線y=ax2+bx+c經(jīng)過點O、A、C,
可得c=0,∴
解得a=,b=,
∴拋物線解析式為y=x2+x.
(2)設點P的橫坐標為t,∵PN∥CD,∴△OPN∽△OCD,可得PN=
∴P(t,),∵點M在拋物線上,∴M(t,t2+t).
如解答圖1,過M點作MG⊥AB于G,過P點作PH⊥AB于H,
AG=yA﹣yM=2﹣(t2+t)=t2﹣t+2,BH=PN=.
當AG=BH時,四邊形ABPM為等腰梯形,
∴t2﹣t+2=,
化簡得3t2﹣8t+4=0,解得t1=2(不合題意,舍去),t2=,
∴點P的坐標為(,)
∴存在點P(,),使得四邊形ABPM為等腰梯形.
(3)如解答圖2,△AOB沿AC方向平移至△A′O′B′,A′B′交x軸于T,交OC于Q,A′O′交x軸于K,交OC于R.
求得過A、C的直線為yAC=﹣x+3,可設點A′的橫坐標為a,則點A′(a,﹣a+3),
易知△OQT∽△OCD,可得QT=,OH=2RH
∴點Q的坐標為(a,).
A′Q=﹣a+3﹣=(3﹣a)
∵AB=2,OB=1,∴tan∠O′A′B′=tan∠OAB=,
∴KT=A′T•tan∠O′A′B′=(﹣a+3)•=a+,
∴OK=OT﹣KT=a﹣(a+)=a﹣,
過點R作RH⊥x軸于H,
∵tan∠OAB=tan∠KRH==2,
∴RH=2KH,OH=4RH=2a﹣2
∴HT=a-(2 a﹣2)=2-a
S四邊形RKTQ=S△A′KT﹣S△A′RQ=•KT•A′T﹣A′Q•HT
=••(3﹣a)﹣•(3﹣a)•(﹣a+2)
=a2+a﹣=(a﹣)2+
由于<0,
∴在線段AC上存在點A′(,),能使重疊部分面積S取到最大值,最大值為
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年四川德陽市九年級下學期第一次月考試數(shù)學試卷(解析版) 題型:解答題
如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標系中,使直角邊OB、OD在x軸上.已知點A(1,2),過A、C兩點的直線分別交x軸、y軸于點E、F.拋物線y=ax2+bx+c經(jīng)過O、A、C三點.
(1)求該拋物線的函數(shù)解析式;
(2)點P為線段OC上一個動點,過點P作y軸的平行線交拋物線于點M,交x軸于點N,問是否存在這樣的點P,使得四邊形ABPM為等腰梯形?若存在,求出此時點P的坐標;若不存在,請說明理由.
(3)若△AOB沿AC方向平移(點A始終在線段AC上,且不與點C重合),△AOB在平移過程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com