【題目】如圖,已知正方形ABCD的對角線AC、BD交于點O,CE⊥AC與AD邊的延長線交于點E.
(1)求證:四邊形BCED是平行四邊形;
(2)延長DB至點F,聯(lián)結CF,若CF=BD,求∠BCF的大小.
【答案】(1)見解析;(2)∠BCF=15°
【解析】
(1) 利用正方形的性質得出AC⊥DB,BC//AD,再利用平行線的判定與性質結合平行四邊形的判定方法得出答案;
(2)利用正方形的性質結合直角三角形的性質得出∠OFC=30°,即可得出答案.
解:(1)證明:∵ABCD是正方形,
∴AC⊥DB,BC∥AD
∵CE⊥AC
∴∠AOD=∠ACE=90°
∴BD∥CE
∴BCED是平行四邊形
(2)如圖:連接AF,
∵ABCD是正方形,
∴BD⊥AC,BD=AC=2OB=2OC,
即OB=OC
∴∠OCB=45°
∵ Rt△OCF中, CF=BD=2OC,
∴∠OFC=30°
∴∠BCF=60°-45°=15°
科目:初中數學 來源: 題型:
【題目】在等腰直角三角形AOB中,已知AO⊥OB,點P、D分別在AB、OB上.
(1)∠A=∠B= ;
(2)如圖1中,若PO=PD,∠OPD=45°,證明△BOP是等腰三角形;
(3)如圖2中,若AB=10,點P在AB上移動,且滿足PO=PD,DE⊥AB于點E,試問:此時PE的長度是否變化?若變化,說明理由;若不變,求出PE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;
(3)如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2018年“清明節(jié)”前夕,宜賓某花店用1000元購進若干菊花,很快售完,接著又用2500元購進第二批
花,已知第二批所購花的數量是第一批所購花數的2倍,且每朵花的進價比第一批的進價多元.
(1)第一批花每束的進價是多少元.
(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區(qū)域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)
(1)轉動轉盤一次,求轉出的數字是-2的概率;
(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上.請解答下列問題:
(1)圖中與∠DBE相等的角有: ;
(2)直接寫出BE和CD的數量關系;
(3)若△ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE與AB相交于點F.試探究線段BE與FD的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三角形紙片中,沿過點的直線折疊這個三角形,使點落在邊上的點處,折痕為,則下列結論:
①平分;
②;
③若,,,則的周長為7;
④;
⑤若平分與交于點,當時,.其中結論正確的有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圓桌面(桌面中間有一個直徑為0.4m的圓洞)正上方的燈泡(看作一個點)發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )
A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com