已知:如圖所示,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F分別是線段BM,CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD∶AB= 時(shí),四邊形MENF是正方形(只寫結(jié)論, 不需證明).
分析:本題考查了矩形的性質(zhì)以及菱形和正方形的判定.(1)用SAS證明△ABM和△DCM全等.(2)先證四邊形MENF是平行四邊形,再證它的一組鄰邊ME和MF相等. (3)由(2)得四邊形MENF是菱形,當(dāng)它是正方形時(shí),只需使∠BMC是直角,則有∠AMB+∠CMD=90°.又∵ ∠AMB=∠CMD,∴ △AMB和△CMD都是等腰直角三 角形.
(1)證明:∵ 四邊形ABCD是矩形,
∴ ∠A=∠D=90°,AB=DC.
又∵ MA=MD,∴ △ABM≌△DCM(SAS).
(2)解:四邊形MENF是菱形.
理由:∵ CF=FM,CN=NB,∴ FN∥MB.
同理可得:EN∥MC,
∴ 四邊形MENF是平行四邊形.
∵ △ABM≌△DCM,∴ MB=MC.
又∵ ME=MB,MF=MC,∴ ME=MF.
∴ 平行四邊形MENF是菱形.
(3)解:2∶1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將△ABC沿直線DE折疊后,使得點(diǎn)B與點(diǎn)A重合.已知AC=5cm,△ADC的周長(zhǎng)為17cm,則BC的長(zhǎng)為( )
A.7cm B.10cm C.12cm D.22cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP 沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,且OE=OD,則AP的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有一道練習(xí)題:對(duì)于式子先化簡(jiǎn), 后求值,其中.小明的解法如下:====.小明的解法對(duì)嗎?如果不對(duì),請(qǐng)改正.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知a=b,下列各式:a-b=b-3,a+5=b+5,a-8=b+8,2a =a+b,
正確的有( )
A. 1個(gè); B. 2個(gè); C. 3個(gè); D. 4個(gè);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果線段AB=5cm,BC=4cm,那么A、C兩點(diǎn)間的距離是( )
A. 1cm; B. 9cm; C. 1cm或9cm; D. 都不正確;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com