【題目】如圖,已知拋物線的頂點為,與軸相交于點,對稱軸為直線,點是線段的中點.
(1)求拋物線的表達(dá)式;
(2)寫出點的坐標(biāo)并求直線的表達(dá)式;
(3)設(shè)動點,分別在拋物線和對稱軸l上,當(dāng)以,,,為頂點的四邊形是平行四邊形時,求,兩點的坐標(biāo).
【答案】(1);(2),;(3)點、的坐標(biāo)分別為或、或.
【解析】
(1)函數(shù)表達(dá)式為:,將點坐標(biāo)代入上式,即可求解;
(2)、,則點,設(shè)直線的表達(dá)式為:,將點坐標(biāo)代入上式,即可求解;
(3)分當(dāng)是平行四邊形的一條邊、是平行四邊形的對角線兩種情況,分別求解即可.
解:(1)函數(shù)表達(dá)式為:,
將點坐標(biāo)代入上式并解得:,
故拋物線的表達(dá)式為:;
(2)、,則點,
設(shè)直線的表達(dá)式為:,
將點坐標(biāo)代入上式得:,解得:,
故直線的表達(dá)式為:;
(3)設(shè)點、點,
①當(dāng)是平行四邊形的一條邊時,
點向左平移2個單位、向下平移4個單位得到,
同樣點向左平移2個單位、向下平移4個單位得到,
即:,,
解得:,,
故點、的坐標(biāo)分別為、;
②當(dāng)是平行四邊形的對角線時,
由中點定理得:,,
解得:,,
故點、的坐標(biāo)分別為、;
故點、的坐標(biāo)分別為,或、,或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有形狀、大小和質(zhì)地都相同的四張卡片,正面分別寫有A,B,C,D和一個等式,將這四張卡片背面向上洗勻,從中隨機(jī)抽取一張(不放回),接著再隨機(jī)抽取一張.
(1)用畫樹狀圖或列表的方法表示抽取兩張卡片可能出現(xiàn)的所有情況(結(jié)果用A,B,C,D表示).
(2)小明和小強(qiáng)按下面規(guī)則做游戲:抽取的兩張卡片上若等式都不成立,則小明勝;若至少有一個等式成立,則小強(qiáng)勝.你認(rèn)為這個游戲公平嗎?若公平,請說明理由;若不公平,則這個規(guī)則對誰有利?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A(0,2),B(p,q)在直線上,拋物線m經(jīng)過點B、C(p+4,q),且它的頂點N在直線l上.
(1)若B(-2,1),
①請在平面直角坐標(biāo)系中畫出直線l與拋物線m的示意圖;
②設(shè)拋物線m上的點Q的模坐標(biāo)為e(-2≤e≤0)過點Q作x軸的垂線,與直線l交于點H.若QH=d,當(dāng)d隨e的增大面增大時,求e的取值范圍;
(2)拋物線m與y軸交于點F,當(dāng)拋物線m與x軸有唯一交點時,判斷△NOF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A,B兩個觀測站,A在B的正東方向,有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.
(1)求A、B兩觀測站之間的距離;
(2)小船從點P處沿射線AP的方向前行,求觀測站B與小船的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是半⊙O的直徑,A是⊙O上一點,過點的切線交CB的延長線于點P,過點B的切線交CA的延長線于點E,AP與BE相交于點F.
(1)求證:BF=EF;
(2)若AF=,半⊙O的半徑為2,求PA的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC為⊙O的直徑,以BC為直角邊作Rt△ABC,∠ACB=90°,斜邊AB與⊙O交于點D,過點D作⊙O的切線DE交AC于點E,DG⊥BC于點F,交⊙O于點G.
(1)求證:AE=CE;
(2)若AD=4,AE=,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC與△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=BC=4,AD=DE,點F是BE的中點,連接DF,CF.
(1)如圖1,當(dāng)點D在AB上,且點E是AC的中點時,求CF的長.
(2)如圖1,若點D落在AB上,點E落在AC上,證明:DF⊥CF.
(3)如圖2,當(dāng)AD⊥AC,且E點落在AC上時,判斷DF與CF之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,以A為圓心,AB長為半徑作弧BE,CD于E,若AB=4,則陰影部分的面積為_____(結(jié)果保留π和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.
(1)求拋物線的解析式和直線AC的解析式;
(2)請在y軸上找一點M,使△BDM的周長最小,求出點M的坐標(biāo);
(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com