【題目】RtABC中,∠BAC=90°,DBC中點(diǎn),EAD中點(diǎn),過AAFBC

①求證:AEF≌△DEB;

②求證:四邊形ADCF是菱形;

③若AB=5,AC=4,求菱形ADCF的面積.

【答案】(1)見解析;(2)10.

【解析】分析: ①根據(jù)AAS證△AFE≌△DBE;

②利用①中全等三角形的對應(yīng)邊相等得到AF=BD.結(jié)合已知條件,利用“有一組對邊平行且相等的四邊形是平行四邊形”得到ADCF是菱形,由“直角三角形斜邊的中線等于斜邊的一半”得到AD=DC,從而得出結(jié)論.

③由三角形中線的性質(zhì)和菱形的性質(zhì)得出△ABD的面積=△ACD的面積=△ACF的面積,得出菱形ADCF的面積=Rt△ABC的面積=ABAC,即可得出答案.

詳解:

①證明:∵AFBC,

∴∠AFE=DBE,

EAD的中點(diǎn),ADBC邊上的中線,

AE=DE,BD=CD,

在△AEF和△DEB中,,

∴△AEF≌△DEB(AAS);

②證明:由①知,△AFE≌△DBE,則AF=DB.

DB=DC,

AF=CD.

AFBC,

∴四邊形ADCF是平行四邊形,

∵∠BAC=90°,DBC的中點(diǎn),EAD的中點(diǎn),

AD=DC=BC,

∴四邊形ADCF是菱形.

③∵DBC的中點(diǎn),四邊形ADCF是菱形,

∴△ABD的面積=ACD的面積=ACF的面積,

∴菱形ADCF的面積=RtABC的面積=ABAC=×5×4=10.

點(diǎn)睛: 本題考查了全等三角形的性質(zhì)和判定,平行四邊形的判定,菱形的判定的應(yīng)用;熟練掌握菱形與平行四邊形的判定,證明三角形全等是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某糧庫已存有糧食100噸,本周內(nèi)糧庫進(jìn)出糧食的紀(jì)錄如下(運(yùn)進(jìn)記為正,運(yùn)出記為負(fù)):

(1)通過計(jì)算,說明本周內(nèi)哪天糧庫剩下的糧食最多?

(2)若運(yùn)進(jìn)的糧食為購進(jìn)的,購買的價(jià)格為每噸2000元,運(yùn)出的糧食為賣出的,賣出的價(jià)格為每噸2300元,則這周的利潤為多少?

(3)若每周平均進(jìn)出的糧食大致相同,則再過幾周糧庫存的糧食可達(dá)到200噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正方體禮盒如圖所示,六個(gè)面分別寫有”“”“”“”“”“”,其中的對面是”,“的對面是”,則它的表面展開圖可能是(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=30°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1

(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長線時(shí),求∠CC1A1的度數(shù);
(2)已知AB=6,BC=8,
①如圖2,連接AA1 , CC1 , 若△CBC1的面積為16,求△ABA1的面積;
②如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)的過程中,點(diǎn)P的對應(yīng)是點(diǎn)P1 , 直接寫出線段EP1長度的最大值.
(3)線段EP1長度的最大值為11,理由如下:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),EC交對角線于點(diǎn)F,若SDEC=9,則SBCF=(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個(gè)條件:①AB=BC,②∠ABC=90°,AC=BD,ACBD中選兩個(gè)作為補(bǔ)充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是(  )

A. ①② B. ②③ C. ①③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y是關(guān)于x的一次函數(shù),且當(dāng)x=1時(shí),y=﹣4;當(dāng)x=2時(shí),y=﹣6.

(1)求y關(guān)于x的函數(shù)表達(dá)式;

(2)若﹣2<x<4,求y的取值范圍;

(3)試判斷點(diǎn)P(a,﹣2a+3)是否在函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是_______(只填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(﹣37)﹣(﹣47) (2)10﹣(﹣5)+(﹣9)+6.

(3))-7+13-6+20 (4)0.125+3-(+3)+(﹣0.25)

(5)﹣|﹣1|+||+(﹣2).

(6)1+(﹣2)+3+(﹣4)+…+2017+(﹣2018)+2019+(﹣2020)

(7)(﹣5)+(﹣9)+17+(﹣3

查看答案和解析>>

同步練習(xí)冊答案