14.直角三角形的一條直角邊長(zhǎng)為xcm,兩條直角邊的和為7cm,面積為ycm2,寫(xiě)出變量y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍,并說(shuō)明這個(gè)函數(shù)是不是二次函數(shù).

分析 根據(jù)直角三角形的面積公式可得y=$\frac{1}{2}$x(7-x),再由兩條直角邊的和為7cm可得x的取值范圍,再利用二次函數(shù)定義判定這個(gè)函數(shù)是二次函數(shù).

解答 解:由題意得:y=$\frac{1}{2}$x(7-x),
∵兩條直角邊的和為7cm,
∴0<x<7.
這個(gè)函數(shù)是二次函數(shù).

點(diǎn)評(píng) 此題主要考查了二次函數(shù)定義,以及由實(shí)際問(wèn)題列二次函數(shù)解析式,關(guān)鍵是掌握形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,大拇指與小拇指盡量張開(kāi)時(shí),兩指尖的距離稱為指距.根據(jù)最近人體構(gòu)造學(xué)的研究成果表明,一般情況下人的指距d和身高h(yuǎn)成某種關(guān)系.如表是測(cè)得的指距與身高的一組數(shù)據(jù):
指距d(cm)20212223
身高h(yuǎn)(cm)160169178187
根據(jù)上表解決下面這個(gè)實(shí)際問(wèn)題:姚明的身高是226厘米,可預(yù)測(cè)他的指距約為(  )
A.25.3厘米B.26.3厘米C.27.3厘米D.28.3厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,如果AD=5,BD=20,求CD、AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,已知P是兩直角邊分別為3cm、4cm的Rt△ABC斜邊AB上的任意一點(diǎn),以CP為直徑作圓,則該圓的面積y(cm2)與CP的長(zhǎng)x(cm)之間的函數(shù)關(guān)系式是y=$\frac{1}{4}$πx2,自變量x的取值范圍是2.4≤x≤4,y的最小值是1.44π,y的最大值是4π.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,二次函數(shù)y=$\frac{5}{4}$x2(0≤x≤2)的圖象記為曲線C1,將C1繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得曲線C2
(1)請(qǐng)畫(huà)出C2;
(2)寫(xiě)出旋轉(zhuǎn)后A(2,5)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)(-5,2);
(3)直接寫(xiě)出C1旋轉(zhuǎn)至C2過(guò)程中掃過(guò)的面積$\frac{29}{4}$π.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

19.單項(xiàng)式4x2y的系數(shù)是4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某超市銷售一種飲料,平均每天可售出100箱,每箱利潤(rùn)為120元,為了擴(kuò)大銷量,盡快減少庫(kù)存,超市準(zhǔn)備適當(dāng)降價(jià),據(jù)測(cè)算,若每箱降價(jià)2元,則每天可多售出4箱.
(1)如果要使每天銷售該飲料獲利14000元,則每箱應(yīng)降價(jià)多少元.
(2)每天銷售該飲料獲利能達(dá)到14500元嗎?若能,則每箱應(yīng)降價(jià)多少?若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知y-4與x成正比例,且 x=6 時(shí),y=-4.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P在y軸上,(1)中的函數(shù)圖象與x軸、y軸分別交于A、B兩點(diǎn),以A、B、P為頂點(diǎn)的等腰三角形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.計(jì)算:
(1)($\frac{1}{2}$)-1-2+(π-3.14)0     
(2)$\frac{{x}^{2}-1}{{x}^{2}+2x+1}$÷$\frac{{x}^{2}-x}{x+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案