【題目】已知雙曲線與直線相交于、兩點(diǎn).過點(diǎn)作矩形交軸于點(diǎn).交軸于點(diǎn).交雙曲線于點(diǎn).若是的中點(diǎn),四邊形的面積為,則雙曲線的解析式為________.
【答案】
【解析】
設(shè)B點(diǎn)坐標(biāo)為(-a,-b),因?yàn)?/span>BD∥y軸,B是CD的中點(diǎn),于是得到C點(diǎn)坐標(biāo)為(-a,-2b).根據(jù)四邊形ODCN的面積為a·2b=2ab,△ODB,△OEN的面積均為,四邊形OBCE的面積為4.列方程即可得到結(jié)果.
解:設(shè)B點(diǎn)坐標(biāo)為(-a,-b),因?yàn)?/span>BD∥y軸,B是CD的中點(diǎn),C點(diǎn)坐標(biāo)為(-a,-2b).
∵四邊形ODCN的面積為a·2b=2ab,△ODB,△OEN的面積均為,四邊形OBCE的面積為4.
∴2ab-k=4
又∵ab=k,
∴2k-k=4,解得k=4;
則雙曲線的解析式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李航想利用太陽光測(cè)量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,李航邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線上).已知李航的身高EF是1.6m,請(qǐng)你幫李航求出樓高AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)的圖象,小強(qiáng)從圖象中得出了條信息:
①;②;③當(dāng)時(shí),函數(shù)取得最小值;④,
其中正確的個(gè)數(shù)有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要建一個(gè)面積為130平方米的倉(cāng)庫(kù),現(xiàn)有能圍成32米長(zhǎng)的木板,倉(cāng)庫(kù)的一邊靠墻,并在與墻垂直的一邊開一道1米寬的小門.
(1)如果墻長(zhǎng)16米,求倉(cāng)庫(kù)的長(zhǎng)和寬;
(2)如果墻長(zhǎng)a米,在離開墻9米開外倉(cāng)庫(kù)一側(cè)修條小路,那么墻長(zhǎng)至少要多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次蠟燭燃燒實(shí)驗(yàn)中,蠟燭燃燒時(shí)剩余部分的高度y(cm)是燃燒時(shí)間x(h) 的一次函數(shù).某蠟燭的高度為30cm,燃燒3h后,蠟燭剩余部分的高度為12cm.
(1)求蠟燭燃燒時(shí)y(cm)與x(h)之間的函數(shù)表達(dá)式;
(2)求出蠟燭從點(diǎn)燃到燃盡所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知x+y=5,xy=3,求x2+y2的值;
(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;
(3)已知x2﹣3x﹣1=0,求x2+的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AM∥BN,AE平分∠BAM,BE平分∠ABN,
(1)求∠AEB的度數(shù).
(2)如圖2,過點(diǎn)E的直線交射線線AM于點(diǎn)C,交射線BN于點(diǎn)D,求證:AC+BD=AB;
(3)如圖3,過點(diǎn)E的直線交射線線AM的反向延長(zhǎng)線于點(diǎn)C,交射線BN于點(diǎn)D,AB=5,AC=3,S△ABE﹣S△ACE=2,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊中點(diǎn),∠EDF繞D點(diǎn)旋轉(zhuǎn),它的兩邊分別交AC、CB(或它們的延長(zhǎng)線)于E、F
(1)當(dāng)點(diǎn)E在AC邊上時(shí)(如圖1),求證CE=BF
(2)在(1)的條件下,求證:
(3)當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到圖3的位置即點(diǎn)E、F分別在AC、CB邊的延長(zhǎng)線上時(shí),上述(2)結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子里裝著個(gè)黃球,個(gè)黑球和個(gè)紅球,他們除了顏色外完全相同.
小明和小穎玩摸球游戲,規(guī)定每人摸球一次再將球放回為依次游戲,若摸到黑球則小明獲勝,摸到黃球則小穎獲勝,這個(gè)游戲公平嗎?說說你的理由.
現(xiàn)在裁判向袋子中放入若干個(gè)紅球,大量重復(fù)試驗(yàn)后,發(fā)現(xiàn)小明獲勝的頻率穩(wěn)定在附近,問裁判放入了多少個(gè)紅球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com