【題目】如圖,直線與直線交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)為,且直線與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線與y軸交于點(diǎn)C.
(1)求點(diǎn)A的坐標(biāo)及直線的函數(shù)表達(dá)式;
(2)連接,求的面積.
【答案】(1) ;(2)1.
【解析】
(1)將x=-1代入得出縱坐標(biāo),從而得到點(diǎn)A的坐標(biāo);再用待定系數(shù)法求得直線的函數(shù)表達(dá)式;
(2)連接,先根據(jù)解析式求得B,C,D的坐標(biāo),得出BO,CD的長,然后利用割補(bǔ)法求的面積,.
解:(1)因?yàn)辄c(diǎn)A在直線上,且橫坐標(biāo)為,所以點(diǎn)A的縱坐標(biāo)為,所以點(diǎn)A的坐標(biāo)為.
因?yàn)橹本過點(diǎn)A,所以將代入,得,解得,所以直線的函數(shù)表達(dá)式為.
(2)如圖,連接BC,
由直線,的函數(shù)表達(dá)式,易得點(diǎn)B的坐標(biāo)為,點(diǎn)D的坐標(biāo)為,點(diǎn)C的坐標(biāo)為,所以.
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐示系xOy中,直線與直線交于點(diǎn)A(3,m).
(1)求k,m的値;
(2)己知點(diǎn)P(n,n),過點(diǎn)P作垂直于y軸的直線與直線交于點(diǎn)M,過點(diǎn)P作垂直于x軸的直線與直線交于點(diǎn)N(P與N不重合).若PN≤2PM,結(jié)合圖象,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,P(a,3)是直線y=x+5上的一點(diǎn),直線 y=k1x+b與雙曲線相交于P、Q(1,m).
(1)求雙曲線的解析式及直線PQ的解析式;
(2)根據(jù)圖象直接寫出不等式>k1x+b的解集.
(3)若直線y=x+5與x軸交于A,直線y=k1x+b與x軸交于M求△APQ的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程有兩個不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)如果,且k為整數(shù),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,E為BC邊中點(diǎn),以AD為直徑的⊙O與AE交于點(diǎn)F.
(1)求證:四邊形AOCE為平行四邊形;
(2)求證:CF與⊙O相切;
(3)若F為AE的中點(diǎn),求∠ADF的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2-(2m+1)x+m-5的圖象與x軸有兩個公共點(diǎn).
()求m的取值范圍;
()若m取滿足條件的最小的整數(shù),
①寫出這個二次函數(shù)的表達(dá)式;
②當(dāng)n≤x≤1時,函數(shù)值y的取值范圍是-6≤y≤4-n,求n的值;
③將此二次函數(shù)圖象平移,使平移后的圖象經(jīng)過原點(diǎn)O.設(shè)平移后的圖象對應(yīng)的函數(shù)表達(dá)式為y=a(x-h(huán))2 +k,當(dāng)x<2時,y隨x的增大而減小,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,過點(diǎn)作于點(diǎn),點(diǎn)在邊上,,連接,.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BE=5,AF平分∠DAB,求平行四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線AB交兩坐標(biāo)軸于A(a,0)、B(0,b)兩點(diǎn),且a,b滿足等式:+(b﹣4)2=0,點(diǎn)P為直線AB上第一象限內(nèi)的一動點(diǎn),過P作OP的垂線且與過B點(diǎn)且平行于x軸的直線相交于點(diǎn)Q,
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)當(dāng)P點(diǎn)在直線AB上的第一象限內(nèi)運(yùn)動時,AP﹣BQ的值變不變?如果不變,請求出這個定值;若變化請說明理由.
(3)延長QO與直線AB交于點(diǎn)M.請判斷出線段AP,BM,PM三條線段構(gòu)成三角形的形狀,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ABC中,CA=CB,∠ACB=90°,點(diǎn)O是AB的中點(diǎn).
(1)如圖1,求證:CO=BO;
(2)如圖2,點(diǎn)M在邊AC上,點(diǎn)N在邊BC延長線上,MN﹣AM=CN,求∠MON的度數(shù);
(3)如圖3,AD∥BC,OD∥AC,AD與OD交于點(diǎn)D,Q是OB的中點(diǎn),連接CQ、DQ,試判斷線段CQ與DQ的關(guān)系,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com