如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,∠C=45°,BE⊥CD,垂足為E,AD=2,CD=數(shù)學(xué)公式,則BE=________.

3
分析:過D作DF⊥BC于F,由CD=4,∠C=45°可求出BC的長,再在△BEC中,求得BE=.
解答:過D作DF⊥BC于F,
∴∠DFC=90°,又∠C=45°,
∴∠FDC=∠C=45°,
∴△DFC為等腰直角三角形,
∵CD=4
∴DF=CF=CDsin45°=4,
∴BC=BF+FC=4+2=6,
在RT△BEC中,∠C=45°,BC=6,
∴BE=3
故答案為3
點(diǎn)評(píng):考查綜合應(yīng)用解直角三角形、直角三角形性質(zhì),進(jìn)行邏輯推理能力和運(yùn)算能力.作輔助線是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案