【題目】如圖,在中,,DAB上的點,過點DBC于點F,交AC的延長線于點E,連接CD,,則下列結(jié)論正確的有( )

DCB=B;②CD=AB;③ADC是等邊三角形;④若E=30°,則DE=EF+CF

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

【答案】B

【解析】

由在△ABCACB=90°,DEAB,根據(jù)等角的余角相等可得①∠DCB=B正確;

由①可證得AD=BD=CD即可得②CD=AB正確;

易得③△ADC是等腰三角形,但不能證得△ADC是等邊三角形;

由若∠E=30°,易求得∠FDC=FCD=30°,則可證得DF=CF繼而證得DE=EF+CF

在△ABC中,∵∠ACB=90°,DEAB,∴∠ADE=ACB=90°,∴∠A+∠B=90°,ACD+∠DCB=90°.

∵∠DCA=DAC,AD=CDDCB=B;故①正確

CD=BD

AD=BD,CD=AB故②正確;

DCA=DAC,AD=CD,但不能判定△ADC是等邊三角形故③錯誤;

∵∠E=30°,∴∠A=60°,∴△ACD是等邊三角形,∴∠ADC=30°.

∵∠ADE=ACB=90°,∴∠EDC=BCD=B=30°,CF=DF,DE=EF+DF=EF+CF.故④正確

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=9,AD=4.ECD邊上一點,CE=6.點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE.設(shè)點P運動的時間為t秒.

(1)求△ADE的周長;

(2)當(dāng)t為何值時,△PAE為直角三角形?

(3)是否存在這樣的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3、A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點D是△ABC所在平面內(nèi)一點,連接AD、CD

(1)如圖1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC

(2)如圖2,若存在一點P,使得PB平分∠ABC,同時PD平分∠ADC,探究∠A,∠P,∠C的關(guān)系并證明;

(3)如圖3,在 (2)的條件下,將點D移至∠ABC的外部,其它條件不變,探究∠A,∠P,∠C的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,D,EF分別為AB,BCCA上的點,且,

(1)求證:;

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,聯(lián)結(jié)AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.

(1)如果AB=AC,∠BAC=90°,
①當(dāng)點D在線段BC上時(與點B不重合),如圖2,將△ABD繞A點逆時針旋轉(zhuǎn)90°,所得到的三角形為 , 線段CF,BD所在直線的位置關(guān)系為 , 線段CF,BD的數(shù)量關(guān)系為;

(2)②當(dāng)點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;

(3)如果AB≠AC,∠BAC是銳角,點D在線段BC上,當(dāng)∠ACB滿足什么條件時,CF⊥BC(點C,F(xiàn)不重合),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點,則y1<y2其中結(jié)論正確的是(

A.①②
B.②③
C.②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“今天你光盤了嗎?”這是國家倡導(dǎo)“厲行節(jié)約,反對浪費”以來的時尚流行語.某校團委隨機抽取了部分學(xué)生,對他們進行了關(guān)于“光盤行動”所持態(tài)度的調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計圖:

根據(jù)上述信息,解答下列問題:
(1)抽取的學(xué)生人數(shù)為;
(2)將兩幅統(tǒng)計圖補充完整;
(3)請你估計該校1200名學(xué)生中對“光盤行動”持贊成態(tài)度的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案