【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走均為正,向下向左走均為負.如果從AB記為:A→B(+1,+4),從BA記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.

(1)圖中A→C(     ),B→C(      ),C→   (+1,﹣2);

(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),請在圖中標出P的位置;

(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程.

(4)若圖中另有兩個格點M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),則N→A應記為什么?

【答案】(1)(+3,+4),(+2,0),D;(2)見解析;(3)10;(4)(﹣2,﹣2)

【解析】

(1)根據(jù)規(guī)定及實例可知A→C記為(3,4)C→D記為(1,-1);A→B→C→D記為(1,4),(2,0),(1,-1);

(2)按題目所示平移規(guī)律分別向右向上平移2個格點,再向右平移2個格點,向下平移1個格點;向左平移2個格點,向上平移3個格點;向左平移1個向下平移兩個格點即可得到點P的坐標,在圖中標出即可;

(3)根據(jù)M→A(3-a,b-4),M→N(5-a,b-2)可知5-a-(3-a)=2,b-2-(b-4)=2,從而得到點A向右走2個格點,向上走2個格點到點N,從而得到N→A應記為什么.

(1)圖中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);

故答案為:(+3,+4),(+2,0),D;

(2)P點位置如圖1所示;

(3)如圖2,根據(jù)已知條件可知:

A→B表示為:(1,4),B→C;p記為(2,0)C→D記為(1,﹣2);

則該甲蟲走過的路線長為:1+4+2+1+2=10;

(4)由M→A(3﹣a, b﹣4),M→N(5﹣a,b﹣2),

所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,

所以,點A向右走2個格點,向上走2個格點到點N,

所以,N→A應記為(﹣2,﹣2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是面積為1的等邊三角形。取BC邊中點E,作ED∥AB,

EF∥AC,得到四邊形EDAF,它的面積記做S1;取BE中點G,做GH∥FB,GK∥EF,

得到四邊形GHFK,它的面積記作S2.照此規(guī)律作下去,

S2018=__________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級(1)班現(xiàn)要從A、B兩位男生和D、E兩位女生中,選派學生代表本班參加全!爸腥A好詩詞”大賽.
(1)如果選派一位學生代表參賽,那么選派到的代表是A的概率 ;
(2)如果選派兩位學生代表參賽,求恰好選派一男一女兩位同學參賽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在OAB中,O為坐標原點,橫、縱軸的單位長度相同,A、B的坐標分別為(8,6),(16,0),點P沿OA邊從點O開始向終點A運動,速度每秒1個單位,點Q沿BO邊從B點開始向終點O運動,速度每秒2個單位,如果P、Q同時出發(fā),用t()表示移動時間,當這兩點中有一點到達自己的終點時,另一點也停止運動。求:

1)幾秒時PQAB.

2)設OPQ的面積為y,求yt的函數(shù)關系式.

3OPQOAB能否相似?若能,求出點P的坐標,若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB、AC于點E、G.連接GF.下列結論:①∠AGD=112.5°;AD:AE=2;SAGD=SOGD;④四邊形AEFG是菱形;⑤BE=2 OG。其中正確結論的序號是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標是(10,0),點B的坐標為(8,0),點C、D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條折線數(shù)軸.圖中點A表示﹣11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢復原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢復原速.設運動的時間為t秒.

問:(1)動點P從點A運動至C點需要多少時間?

(2)P、Q兩點相遇時,求出相遇點M所對應的數(shù)是多少;

(3)求當t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在陽光體育活動時間,小亮、小瑩、小芳和大剛到學校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.
(1)如果確定小亮打第一場,再從其余三人中隨機選取一人打第一場,求恰好選中大剛的概率;
(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市種植某種綠色蔬菜,全部用來出口.為了擴大出口規(guī)模,該市決定對這種蔬菜的種植實行政府補貼,規(guī)定每種植﹣畝這種蔬菜一次性補貼菜農(nóng)若干元.經(jīng)調查,種植畝數(shù)y(畝)與補貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關系.隨著補貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會相應降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關系.
(1)在政府未出臺補貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補貼政策實施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補貼數(shù)額x之間的函數(shù)關系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應將每畝補貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

同步練習冊答案