已知平面直角坐標系中A(-8, 15), 則點A到x軸的距離為______, 到y(tǒng)軸距離為_____, 到原點的距離為_______.
15,8,17.

試題分析:根據(jù)點到x軸的距離等于縱坐標的長度,到y(tǒng)軸的距離等于橫坐標長度求解;再利用勾股定理列式計算即可求出點到原點的距離.
試題解析:點A(-8,15)到x軸的距離為15,到y(tǒng)軸距離為8,
到原點的距離為
考點: 1.點的坐標;2.勾股定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:在△ABC中,∠BAC=90°,AB=AC,AE是過點A的一條直線,且BD⊥AE于D,CE⊥AE于E.
(1)當直線AE處于如圖①的位置時,有BD=DE+CE,請說明理由;
(2)當直線AE處于如圖②的位置時,則BD、DE、CE的關系如何?請說明理由;
(3)歸納(1)、(2),請用簡潔的語言表達BD、DE、CE之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,△ABC的角平分線BD、CE相交于點P.
(1)如果∠A=70°,求∠BPC的度數(shù);
(2)如圖②,過P點作直線MN∥BC,分別交AB和AC于點M和N,試求∠MPB+∠NPC的度數(shù)(用含∠A的代數(shù)式表示);

①                   ②             ③            ④
在(2)的條件下,將直線MN繞點P旋轉.
(ⅰ)當直線MN與AB、AC的交點仍分別在線段AB和AC上時,如圖③,試探索∠MPB、∠NPC、∠A三者之間的數(shù)量關系,并說明你的理由;
(ⅱ)當直線MN與AB的交點仍在線段AB上,而與AC的交點在AC的延長線上時,如圖④,試問(。┲小螹PB、∠NPC、∠A三者之間的數(shù)量關系是否仍然成立?若成立,請說明你的理由;若不成立,請給出∠MPB、∠NPC、∠A三者之間的數(shù)量關系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

探究與發(fā)現(xiàn):
(1)探究一:三角形的一個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖1,在△ADC中,DP、CP分別平分∠ADC和∠ACD,
試探究∠P與∠A的數(shù)量關系,并說明理由.

圖1                          圖2                       圖3
(2)探究二:四邊形的兩個個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖2,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試探究∠P與∠A+∠B的數(shù)量關系,并說明理由.
(3)探究三:六邊形的四個內角與另兩個內角的平分線所夾的角之間的關系
已知:如圖3,在六邊形ABCDEF中,DP、CP分別平分∠EDC和∠BCD,請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關系:__     __          __

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面坐標系中,點A、點B分別在x軸、y軸的正半軸上,且OA=OB,另有兩點C(a,b)和D(b,-a)(a、b均大于0);

(1)連接OD、CD,求證:∠ODC=450;
(2)連接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度數(shù);
(3)若a=b,在線段OA上有一點E,且AE=3,CE=5,AC=7,求⊿OCA 的面積。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

△ABC的三邊分別為下列各組值, 其中不是直角三角形三邊的是(    )
A.a(chǎn)="41," b="40," c="9" B.a(chǎn)="1.2," b="1.6," c=2
C.a(chǎn)=, b=, c=D.a(chǎn)=, b=, c=1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,∠ACB=90°,AB=8 cm,D是AB的中點,現(xiàn)將△BCD沿BA方向平移1 cm,得到△EFG,F(xiàn)G交AC于H,則GH的長等于________cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等腰三角形的兩內角度數(shù)之比是1∶2,則頂角的度數(shù)是  (  )
A.90°B.45°C.36°D.90°或36°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,∠1、∠2、∠3、∠4是五邊形ABCDE的4個外角.若∠A=120°,則∠1+∠2+∠3+∠4=    .

查看答案和解析>>

同步練習冊答案