【題目】【閱讀理解】對(duì)于任意正實(shí)數(shù)a、b,

∵(2≥0,∴a-2b≥0,

ab≥2,(只有當(dāng)a=b時(shí),ab等于2).

【獲得結(jié)論】在ab≥2ab均為正實(shí)數(shù))中,若ab為定值p

ab≥2,只有當(dāng)a=b時(shí),ab有最小值2

根據(jù)上述內(nèi)容,回答下列問題:(1)若>0,只有當(dāng)= 時(shí),m+有最小值

【探索應(yīng)用】(2)已知點(diǎn)Q(-3,-4)是雙曲線y=上一點(diǎn),過QQAx軸于點(diǎn)A,作QBy軸于點(diǎn)B.點(diǎn)P為雙曲線y=x>0)上任意一點(diǎn),連接PA,PB,求四邊形AQBP的面積的最小值.

【答案】(1)m=2,最小值為4;(2)、24.

【解析】試題分析:(1)、根據(jù)題意可得:m=,從而求出m的值,然后將m的值代入代數(shù)式得出最小值;(2)、設(shè)點(diǎn)P的坐標(biāo)為(x,),然后求出四邊形的面積得出答案.

試題解析:(1)、根據(jù)題意可得:m=解得:m=2 則最小值為:m+=2+2=4

(2)、連接PQ,設(shè)Px),∴S四邊形AQBP==≥12+12=24

最小值為24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項(xiàng)工程,甲、乙兩公司合做,12天可以完成,共需付工費(fèi)102000元;如果甲、乙兩公司單獨(dú)完成此項(xiàng)公程,乙公司所用時(shí)間甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元。

(1)甲、乙公司單獨(dú)完成此項(xiàng)工程,各需多少天?

(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司施工費(fèi)較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,AE垂直x軸于E點(diǎn),已知,OE=3AE,點(diǎn)B的坐標(biāo)為(m,)。

(1)求反比例函數(shù)的解析式。

(2)求一次函數(shù)的解析式。

(3)在y軸上存在一點(diǎn)P,使得PDC與ODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2﹣2x+m2+2(m是常數(shù))的頂點(diǎn)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖象經(jīng)過(1,2)的正比例函數(shù)的表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校要用20m的籬笆,一面靠墻(墻長10m),圍成一個(gè)矩形花圃,設(shè)矩形花圃垂直于墻的一邊長為xm,花圃的面積為ym2

1)求出yx的函數(shù)關(guān)系式.

2)當(dāng)矩形花圃的面積為48m2時(shí),求x的值.

3)當(dāng)邊長x為多少時(shí),矩形的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1

(1)當(dāng)∠A為70°時(shí),

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請(qǐng)寫出∠A與∠An 的數(shù)量關(guān)系____________;

(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=  

(4)如圖3,若E為BA延長線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q —∠A1的值為定值.

其中有且只有一個(gè)是正確的,請(qǐng)寫出正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.

(1)求證:ABQ≌△CAP;

(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),QMC變化嗎?若變化,請(qǐng)說明理由;若不變,求出它的度數(shù).

(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則QMC變化嗎?若變化,請(qǐng)說明理由;若不變,則求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ym1x2-|m|3是關(guān)于x的一次函數(shù),則m的值為( )

A. 1B. 1C. 1D. 2

查看答案和解析>>

同步練習(xí)冊答案