【題目】如圖,⊙O是銳角△ABC的外接圓,FH是⊙O的切線,切點(diǎn)為F,FH∥BC,連結(jié)AF交BC于E,∠ABC的平分線BD交AF于D,連結(jié)BF.下列結(jié)論:①AF平分∠BAC;②點(diǎn)F為△BDC的外心;③;④若點(diǎn)M,N分別是AB和AF上的動(dòng)點(diǎn),則BN+MN的最小值是ABsin∠BAC.其中一定正確的是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
【答案】①②③④
【解析】
如圖1,連接OF,CF,通過切線的性質(zhì)證OF⊥FH,進(jìn)而由FH∥BC,得OF⊥BC,即可由垂徑定理得到F是弧BC的中點(diǎn),根據(jù)圓周角定理可得∠BAF=∠CAF,可得AF平分∠BAC;由三角形外角性質(zhì)和同弧所對(duì)的圓周角相等可得∠BDF=∠FBD,可得BF=DF=CF,可得點(diǎn)F為△BDC的外心;如圖2,過點(diǎn)C作CG∥AB,交AF的延長(zhǎng)線于點(diǎn)G,通過證明△BAE∽△CGE,可得,即可判斷③;如圖3,作點(diǎn)M關(guān)于AF的對(duì)稱點(diǎn)M',當(dāng)點(diǎn)N在線段BM'上,且BM'⊥AC時(shí),BN+MN有最小值為BM',即可判斷④.
解:如圖1,連接OF,CF,
∵FH是⊙O的切線,
∴OF⊥FH,
∵FH∥BC,
∴OF⊥BC,且OF為半徑,
∴OF垂直平分BC,
∴=,
∴∠1=∠2,BF=CF,
∴AF平分∠BAC,故①正確,
∵∠1=∠2,∠4=∠3,∠5=∠2,
∴∠1+∠4=∠2+∠3,
∴∠1+∠4=∠5+∠3,
∵∠1+∠4=∠BDF,∠5+∠3=∠FBD,
∴∠BDF=∠FBD,
∴BF=FD,且BF=CF,
∴BF=DF=CF,
∴點(diǎn)F為△BDC的外心,故②正確;
如圖2,過點(diǎn)C作CG∥AB,交AF的延長(zhǎng)線于點(diǎn)G,
∵CG∥AB,
∴∠BAE=∠EGC,且∠BAE=∠CAE,
∴∠CAE=∠CGE,
∴AC=CG,
∵CG∥AB,
∴△BAE∽△CGE,
∴,
∴==,
故③正確;
如圖3,作點(diǎn)M關(guān)于AF的對(duì)稱點(diǎn)M',
∵點(diǎn)M與點(diǎn)M'關(guān)于AF對(duì)稱,
∴MN=M'N,
∴BN+MN=BN+M'N,
∴當(dāng)點(diǎn)N在線段BM'上,且BM'⊥AC時(shí),BN+MN有最小值為BM',且sin∠BAC=,
∴BN+MN最小值為ABsin∠BAC,
故④正確,
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖像交于點(diǎn)、,與軸、軸分別交于點(diǎn)、,作軸于點(diǎn),軸于點(diǎn),過點(diǎn)、分別作,,分別交軸于點(diǎn)、,交于點(diǎn),若四邊形和四邊形的面積和為12,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“泥興陶,,是欽州的一張文化名片。欽州市某妮興陶公司以每只60元的價(jià)格銷售一種成本價(jià)為40元的文化紀(jì)念杯,每星期可售出100只。后來(lái)經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),每只杯子的售價(jià)每降低1元,則平均何星期可多買出10只。若該公司銷售這種文化紀(jì)念杯要想平均每星期獲利2240元,請(qǐng)回答:
(1)每只杯應(yīng)降價(jià)多少元?
(2)在平均每星期獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該公司應(yīng)該按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
小紅遇到這樣一個(gè)問題:如圖1,在四邊形ABCD中,∠A=∠C=90°,∠D=60°,AB=,BC=,求AD的長(zhǎng).
小紅發(fā)現(xiàn),延長(zhǎng)AB與DC相交于點(diǎn)E,通過構(gòu)造Rt△ADE,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).
請(qǐng)回答:AD的長(zhǎng)為 .
參考小紅思考問題的方法,解決問題:
如圖3,在四邊形ABCD中,tanA=,∠B=∠C=135°,AB=9,CD=3,求BC和AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,其外接圓的半徑為r.
(探究)
(1)如圖甲,作直徑BD,若r=3,發(fā)現(xiàn)的值為 .
(2)猜想,,之間的關(guān)系,并證明你的猜想.
(應(yīng)用)
(3)如圖乙,一貨輪在C處測(cè)得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得燈塔A在貨輪的北偏西75°的方向上,求此時(shí)貨輪距燈塔A的距離AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在雙曲線上,垂直軸,垂足為,點(diǎn)在上,平行于軸交雙曲線于點(diǎn),直線與軸交于點(diǎn),已知,點(diǎn)的坐標(biāo)為.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)直接寫出反比例函數(shù)值大于一次函數(shù)值時(shí)自變量的值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)在邊上,把沿翻折后,點(diǎn)落在處.若恰為等腰三角形,則的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)坐標(biāo)是(1,4),且過點(diǎn)(2,5),
(1)求拋物線的函數(shù)表達(dá)式;
(2)求將拋物線向左平移幾個(gè)單位,可以使平移后的拋物線經(jīng)過原點(diǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com