.如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,AE∥CD,CE∥AB,連接DE交AC于點O.
(1)證明:四邊形ADCE為菱形;
(2)證明:DE=BC.
【考點】菱形的判定與性質(zhì).
【專題】證明題.
【分析】(1)先證明四邊形ADCE是平行四邊形,再由直角三角形斜邊上的中線性質(zhì)得出CD=AB=AD,即可得出四邊形ADCE為菱形;
(2)由菱形的性質(zhì)得出AC⊥DE,證出DE∥BC,再由CE∥AB,證出四邊形BCED是平行四邊形,即可得出結(jié)論.
【解答】(1)證明:∵AE∥CD,CE∥AB,
∴四邊形ADCE是平行四邊形,
∵∠ACB=90°,D為AB的中點,
∴CD=AB=AD,
∴四邊形ADCE為菱形;
(2)證明:∵四邊形ADCE為菱形,
∴AC⊥DE,
∵∠ACB=90°,
∴AC⊥BC,
∴DE∥BC,
又∵CE∥AB,
∴四邊形BCED是平行四邊形,
∴DE=BC.
【點評】本題考查了菱形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、直角三角形斜邊上的中線性質(zhì);熟練掌握菱形的判定與性質(zhì),證明四邊形BCED是平行四邊形是解決問題(2)的關鍵.
科目:初中數(shù)學 來源: 題型:
如圖,△AOB的三個頂點都在網(wǎng)格的格點上,每個小正方形的邊長均為1個單位長度.
(1)在網(wǎng)格中畫出△AOB繞點O逆時針旋轉(zhuǎn)90°后的△A1OB1的圖形;
(2)求旋轉(zhuǎn)過程中邊OB掃過的面積(結(jié)果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com