【題目】如圖(1),AB∥CD,猜想∠BPD與∠B,∠D的關(guān)系,說出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,并說明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,不需要說明理由.

【答案】
(1)解:∠BPD=∠B+∠D.

理由:如圖2,過點(diǎn)P作PE∥AB,

∵AB∥CD,

∴PE∥AB∥CD,

∴∠1=∠B,∠2=∠D,

∴∠BPD=∠1+∠2=∠B+∠D


(2)解:如圖(3):∠BPD=∠D﹣∠B.

理由:∵AB∥CD,

∴∠1=∠D,

∵∠1=∠B+∠P,

∴∠D=∠B+∠P,

即∠BPD=∠D﹣∠B;

如圖(4):∠BPD=∠B﹣∠D.

理由:∵AB∥CD,

∴∠1=∠B,

∵∠1=∠D+∠P,

∴∠B=∠D+∠P,

即∠BPD=∠B﹣∠D.


【解析】(1)首先過點(diǎn)P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得∠1=∠B,∠2=∠D,則可求得∠BPD=∠B+∠D.(2)由AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等與三角形外角的性質(zhì),即可求得∠BPD與∠B、∠D的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若有理數(shù)x,y滿足|y|=2,x2=64,且|x﹣y|=x﹣y,求x+y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是假命題的是( )

A. 直角的補(bǔ)角是直角

B. 兩直線平行,一組同旁內(nèi)角的角平分線互相垂直

C. 等腰三角形的高、中線、角平分線三線合一

D. 有兩角及其中一角的平分線對(duì)應(yīng)相等的兩個(gè)三角形全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)E、F,與雙曲線y=(x0)交于點(diǎn)P(﹣1,n),且F是PE的中點(diǎn).

(1)求直線l的解析式;

(2)若直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),問a為何值時(shí),PA=PB?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師給同學(xué)們出了一道化簡(jiǎn)的題目:2(2x2y+x)﹣3(x2y﹣2x),小亮同學(xué)的做法如下:2(2x2y+x)﹣3(x2y﹣2x)=4x2y+x﹣3x2y﹣2x=x2y﹣x.請(qǐng)你指出小亮的做法正確嗎?如果不正確,請(qǐng)指出錯(cuò)在哪?并將正確的化簡(jiǎn)過程寫下來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把命題等角對(duì)等邊,改寫成如果___________________________________________________那么______________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊長(zhǎng)方形一邊AD,點(diǎn)D落在BC邊的點(diǎn)F處,BC=10cm,AB=8cm。

求:(1)FC的長(zhǎng);

(2)EF的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)城鎮(zhèn)A、B與兩條公路l1、l2位置如圖所示,電信部門需在C處修建一座信號(hào)發(fā)射塔,要求發(fā)射塔到兩個(gè)城鎮(zhèn)A、B的距離必須相等,到兩條公路l1,l2的距離也必須相等,那么點(diǎn)C應(yīng)選在何處?請(qǐng)?jiān)趫D中,用尺規(guī)作圖找出所有符合條件的點(diǎn)C.(不寫已知、求作、作法,只保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 因式分解:3a3-27ab2=______

查看答案和解析>>

同步練習(xí)冊(cè)答案