如圖,點(diǎn)E,FBC上,BE=CF,AB=DC,∠B=∠C.求證∠A=∠D.

分析:通過證明△ABF≌△DCE,來證明∠A=∠D.

證明:∵ BE=CF,∴ BE+EF=CF+EF,即BF=CE.

在△ABF和△DCE中,∵  

∴ △ABF≌△DCE,∴ ∠A=∠D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、已知,△ABC是等邊三角形,將一塊含30°角的直角三角板DEF如圖放置,讓三角板在BC所在的直線l上向右平移.當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)A恰好落在三角板的斜邊DF上.
問:在三角板平移過程中,圖中是否存在與線段EB始終相等的線段(假定AB、AC與三角板斜邊的交點(diǎn)為G、H)?如果存在,請指出這條線段,并證明;如果不存在,請說明理由.
(說明:結(jié)論中不得含有圖中未標(biāo)識的字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)化簡:(a-
1
a
)÷
a2-2a+1
a
;
(2)已知:在△ABC中,AB=AC.
①設(shè)△ABC的周長為7,BC=y,AB=x(2≤x≤3).寫出y關(guān)于x的函數(shù)關(guān)系式;
②如圖,點(diǎn)D是線段BC上一點(diǎn),連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,點(diǎn)M是CE的中點(diǎn),連接BM.
(1)如圖①,點(diǎn)D在AB上,連接DM,并延長DM交BC于點(diǎn)N,可探究得出BD與BM的數(shù)量關(guān)系為
 
;
(2)如圖②,點(diǎn)D不在AB上,(1)中的結(jié)論還成立嗎?如果成立,請證明;如果不成立,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河北)如圖,點(diǎn)E是線段BC的中點(diǎn),分別以BC為直角頂點(diǎn)的△EAB和△EDC均是等腰三角形,且在BC同側(cè).
(1)AE和ED的數(shù)量關(guān)系為
AE=ED
AE=ED
;AE和ED的位置關(guān)系為
AE⊥ED
AE⊥ED
;
(2)在圖1中,以點(diǎn)E為位似中心,作△EGF與△EAB位似,點(diǎn)H是BC所在直線上的一點(diǎn),連接GH,HD.分別得到圖2和圖3.
①在圖2中,點(diǎn)F在BE上,△EGF與△EAB的相似比1:2,H是EC的中點(diǎn).求證:GH=HD,GH⊥HD.
②在圖3中,點(diǎn)F在的BE延長線上,△EGF與△EAB的相似比是k:1,若BC=2,請直接寫CH的長為多少時(shí),恰好使GH=HD且GH⊥HD(用含k的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案