試題分析:(1)因?yàn)辄c(diǎn)A
0(0,0)在拋物線y
1=-(x-a
1)
2+a
1上,可求得a
1=1,則y
1=-(x-1)
2+1;令y
1=0,求得A
1(2,0),b
1=2;再由點(diǎn)A
1(2,0)在拋物線y
2=-(x-a
2)
2+a
2上,求得a
2=4,y
2=-(x-4)
2+4.
(2)求得y
1的頂點(diǎn)坐標(biāo)(1,1),y
2的頂點(diǎn)坐標(biāo)(4,4),y
3的頂點(diǎn)坐標(biāo)(9,9),依此類推,y
n的頂點(diǎn)坐標(biāo)為(n
2,n
2).因?yàn)樗袙佄锞頂點(diǎn)的橫坐標(biāo)等于縱坐標(biāo),所以頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是:y=x.
(3)①由A
0(0,0),A
1(2,0),求得A
0A
1=2;y
n=-(x-n
2)
2+n
2,令y
n=0,求得A
n-1(n
2-n,0),A
n(n
2+n,0),所以A
n-1A
n=(n
2+n)-(n
2-n)=2n;
②設(shè)直線解析式為:y=kx-2k,設(shè)直線y=kx-2k與拋物線y
n=-(x-n
2)
2+n
2交于E(x
1,y
1),F(xiàn)(x
2,y
2)兩點(diǎn),聯(lián)立兩式得一元二次方程,得到x
1+x
2=2n
2-k,x
1•x
2=n
4-n
2-2k.然后作輔助線,構(gòu)造直角三角形,求出EF
2的表述式為:EF
2=(k
2+1)[4n
2•(1-k)+k
2+8k],可見當(dāng)k=1時,EF
2=18為定值.所以滿足條件的直線為:y=x-2.
試題解析:(1)∵當(dāng)n=1時,第1條拋物線y
1=-(x-a
1)
2+a
1與x軸的交點(diǎn)為A
0(0,0),
∴0=-(0-a
1)
2+a
1,解得a
1=1或a
1=0.
由已知a
1>0,∴a
1=1,
∴y
1=-(x-1)
2+1.
令y
1=0,即-(x-1)
2+1=0,解得x=0或x=2,
∴A
1(2,0),b
1=2.
由題意,當(dāng)n=2時,第2條拋物線y
2=-(x-a
2)
2+a
2經(jīng)過點(diǎn)A
1(2,0),
∴0=-(2-a
2)
2+a
2,解得a
2=1或a
2=4,
∵a
1=1,且已知a
2>a
1,
∴a
2=4,
∴y
2=-(x-4)
2+4.
∴a
1=1,b
1=2,y
2=-(x-4)
2+4.
(2)拋物線y
2=-(x-4)
2+4,令y
2=0,即-(x-4)
2+4=0,解得x=2或x=6.
∵A
1(2,0),
∴A
2(6,0).
由題意,當(dāng)n=3時,第3條拋物線y
3=-(x-a
3)
2+a
3經(jīng)過點(diǎn)A
2(6,0),
∴0=-(6-a
3)
2+a
3,解得a
3=4或a
3=9.
∵a
2=4,且已知a
3>a
2,
∴a
3=9,
∴y
3=-(x-9)
2+9.
∴y
3的頂點(diǎn)坐標(biāo)為(9,9).
由y
1的頂點(diǎn)坐標(biāo)(1,1),y
2的頂點(diǎn)坐標(biāo)(4,4),y
3的頂點(diǎn)坐標(biāo)(9,9),
依此類推,y
n的頂點(diǎn)坐標(biāo)為(n
2,n
2).
∵所有拋物線頂點(diǎn)的橫坐標(biāo)等于縱坐標(biāo),
∴頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是:y=x.
(3)①∵A
0(0,0),A
1(2,0),
∴A
0A
1=2.y
n=-(x-n
2)
2+n
2,令y
n=0,即-(x-n
2)
2+n
2=0,
解得x=n
2+n或x=n
2-n,
∴A
n-1(n
2-n,0),A
n(n
2+n,0),即A
n-1A
n=(n
2+n)-(n
2-n)=2n.
②存在.
設(shè)過點(diǎn)(2,0)的直線解析式為y=kx+b,則有:0=2k+b,得b=-2k,
∴y=kx-2k.
設(shè)直線y=kx-2k與拋物線y
n=-(x-n
2)
2+n
2交于E(x
1,y
1),F(xiàn)(x
2,y
2)兩點(diǎn),
聯(lián)立兩式得:kx-2k=-(x-n
2)
2+n
2,整理得:x
2+(k-2n
2)x+n
4-n
2-2k=0,
∴x
1+x
2=2n
2-k,x
1•x
2=n
4-n
2-2k.
過點(diǎn)F作FG⊥x軸,過點(diǎn)E作EG⊥FG于點(diǎn)G,則EG=x
2-x
1,
FG=y
2-y
1=[-(x
2-n
2)
2+n
2]-[-(x
1-n
2)
2+n
2]=(x
1+x
2-2n
2)(x
1-x
2)=k(x
2-x
1).
在Rt△EFG中,由勾股定理得:EF
2=EG
2+FG
2,
即:EF
2=(x
2-x
1)
2+[k(x
2-x
1)]
2=(k
2+1)(x
2-x
1)
2=(k
2+1)[(x
1+x
2)
2-4x
1•x
2],
將x
1+x
2=2n
2-k,x
1•x
2=n
4-n
2-2k代入,整理得:EF
2=(k
2+1)[4n
2•(1-k)+k
2+8k],
當(dāng)k=1時,EF
2=(1+1)(1+8)=18,
∴EF=3
為定值,
∴k=1滿足條件,此時直線解析式為y=x-2.
∴存在滿足條件的直線,該直線的解析式為y=x-2.
考點(diǎn): 二次函數(shù)綜合題.