【題目】已知如圖,∠COD=90°,直線AB與OC交于點B,與OD交于點A,射線OE和射線AF交于點G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,則∠OGA=
(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=30°,則∠OGA=
(3)將(2)中“∠OBA=30°”改為“∠OBA=α”,其余條件不變,則∠OGA= (用含α的代數(shù)式表示)
(4)若OE將∠BOA分成1:2兩部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度數(shù)(用含α的代數(shù)式表示)
【答案】(1)15°;(2)10°;(3);(4)α+15°或α﹣15°;
【解析】
試題分析:(1)由于∠BAD=∠ABO+∠BOA=α+90°,由AF平分∠BAD得到∠FAD=∠BAD,而∠FAD=∠EOD+∠OGA,2×45°+2∠OGA=α+90°,則∠OGA=α,然后把α=30°代入計算即可;
(2)由于∠GOA=∠BOA=30°,∠GAD=∠BAD,∠OBA=α,根據(jù)∠FAD=∠EOD+∠OGA得到3×30°+3∠OGA=α+90°,則∠OGA=α,然后把α=30°代入計算;
(3)由(2)得到∠OGA=α;
(4)討論:當(dāng)∠EOD:∠COE=1:2時,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,則∠OGA=α+15°;
當(dāng)∠EOD:∠COE=2:1時,則∠EOD=60°,同理得∠OGA=α﹣15°.
解:(1)15°;
(2)10°;
(3);
(4)當(dāng)∠EOD:∠COE=1:2時,
則∠EOD=30°,
∵∠BAD=∠ABO+∠BOA=α+90°,
而AF平分∠BAD,
∴∠FAD=∠BAD,
∵∠FAD=∠EOD+∠OGA,
∴2×30°+2∠OGA=α+90°,
∴∠OGA=α+15°;
當(dāng)∠EOD:∠COE=2:1時,則∠EOD=60°,
同理得到∠OGA=α﹣15°,
即∠OGA的度數(shù)為α+15°或α﹣15°.
故答案為15°,10°,α.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有9名同學(xué)參加歌詠比賽,他們的預(yù)賽成績各不相同,現(xiàn)取其中前4名參加決賽,小紅同學(xué)在知道自己成績的情況下,要判斷自己能否進入決賽,還需要知道這9名同學(xué)成績的( )
A.眾數(shù) B.中位數(shù) C.平均數(shù) D.極差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過直線l外一點P用直尺和圓規(guī)作直線l的垂線的方法是:以點P為圓心,大于點P到直線l的距離長為半徑畫弧,交直線l于點A、B;分別以A、B為圓心,大于AB長為半徑畫弧,兩弧交于點C.連結(jié)PC,則PC⊥AB.
請根據(jù)上述作圖方法,用數(shù)學(xué)表達式補充完整下面的已知條件,并給出證明.
已知:如圖,點P、C在直線l的兩側(cè),點A、B在直線l上,且 , .求證:PC⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能確定△ABC為直角三角形的條件有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中E是BC上的一點,EC=2BE,點D是AC的中點,設(shè)△ABC,△ADF,△BEF的面積分別為S△ABC,S△ADF,S△BEF,且S△ABC=12,則S△ADF﹣S△BEF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運用平方差公式計算,錯誤的是( )
A. (a+b)(a﹣b)=a2﹣b2 B. (2x+1)(2x﹣1)=2x2﹣1
C. (x+1)(x﹣1)=x2﹣1 D. (﹣3x+2)(﹣3x﹣2)=9x2﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,
(1)試說明:∠EAC=∠B;
(2)若AD=10,BD=24,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)進行一次乒乓球單打比賽,要從中選出兩位同學(xué)打笫一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率;
(2)若已確定甲打第一場,再從其余三位同學(xué)中隨機選取一位,求恰好選中乙同學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com