【題目】如圖:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P點(diǎn)在AC上(與A、C不重合),Q在BC上.
(1)當(dāng)△PQC的面積與四邊形PABQ的面積相等時(shí),求CP的長;
(2)當(dāng)△PQC的周長與四邊形PABQ的周長相等時(shí),求CP的長;
(3)試問:在AB上是否存在一點(diǎn)M,使得△PQM為等腰直角三角形?若不存在,請(qǐng)簡要說明理由;若存在,請(qǐng)求出PQ的長.
【答案】(1) ;(2) ;(3)存在,和.
【解析】
(1)由于PQ∥AB,故△PQC∽△ABC,當(dāng)△PQC的面積與四邊形PABQ的面積相等時(shí),△CPQ與△CAB的面積比為1:2,根據(jù)相似三角形的面積比等于相似比的平方,可求出CP的長;
(2)由于△PQC∽△ABC,根據(jù)相似三角形的性質(zhì),可用CP表示出PQ和CQ的長,進(jìn)而可表示出AP、BQ的長.根據(jù)△CPQ和四邊形ABQP的周長相等,可將相關(guān)的各邊相加,即可求出CP的長;
(3)因?yàn)椴荒艽_定哪個(gè)角是直角,故應(yīng)分類討論.
①當(dāng)∠MPQ=90°,且PM=PQ時(shí).因?yàn)?/span>△CPQ∽△CAB,根據(jù)相似三角形邊長的比等于高的比,可求出PQ的值;
②∠PQM=90°時(shí)與①相同;
③當(dāng)∠PMQ=90°,且PM=MQ時(shí),過M作ME⊥PQ,則ME=PQ,根據(jù)相似三角形邊長的比等于高的比,可求出PQ的值.
(1)∵PQ∥AB,
∴△PQC∽△ABC,
∵S△PQC=S四邊形PABQ,
∴S△PQC:S△ABC=1:2,
∴,
∴CP=CA=2;
(2)∵△PQC∽△ABC,
∴,
∴,
∴CQ=CP,
同理:PQ=CP,
∴l△PCQ=CP+PQ+CQ=CP+CP+CP=3CP,
I四邊形PABQ=PA+AB+BQ+PQ,
=4﹣CP+AB+3﹣CQ+PQ,
=4﹣CP+5+3﹣CP+CP,
=12﹣CP,
∴12﹣CP=3CP,
∴CP=12,
∴CP=;
(3)∵AC=4,AB=5,BC=3,
∴△ABC中AB邊上的高為,
①當(dāng)∠MPQ=90°,且PM=PQ時(shí),
∵△CPQ∽△CAB,
∴,
∴,
∴PQ=;
②當(dāng)∠PQM=90°時(shí)與①相同;
③當(dāng)∠PMQ=90°,且PM=MQ時(shí),
過M作ME⊥PQ,則ME=PQ,
∴△CPQ的高為﹣ME=﹣PQ,
∴,
∴,
∴PQ=.
綜合①②③可知:點(diǎn)M存在,PQ的長為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,且CD2=ADDB,AE平分∠CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DFDC.則下列結(jié)論正確的是( 。
A. ①②④ B. ②③④ C. ①②③④ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對(duì)于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,連接BE交對(duì)角線AC于點(diǎn)F,則∠EFC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)P是AB上一動(dòng)點(diǎn)(不與A,B重合),對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)P分別作AC,BD的垂線,分別交AC,BD于點(diǎn)E,F(xiàn),交AD,BC于點(diǎn)M,N.下列結(jié)論:
①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤當(dāng)△PMN∽△AMP時(shí),點(diǎn)P是AB的中點(diǎn).
其中正確的結(jié)論有
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.
(1)求證:∠A=∠ADE;
(2)若AD=8,DE=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為+1,對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAC分別交BC、BD于E、F,
(1)求證:△ABF∽△ACE;
(2)求tan∠BAE的值;
(3)在線段AC上找一點(diǎn)P,使得PE+PF最小,求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張矩形紙片ABCD,AD=9 cm,AB=12 cm,將紙片折疊使A,C兩點(diǎn)重合,那么折痕MN=________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A、B,與y軸交于點(diǎn)C.過點(diǎn)A作AD⊥x軸于點(diǎn)D,AD=2,∠CAD=45°,連接CD,已知△ADC的面積等于6.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點(diǎn)E是點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn),求△ABE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com