【題目】標有-3,-2,4的三張不透明的卡片,除正面寫有不同的數(shù)字外,其余的值都相同,將這三張卡片背面朝上洗勻后,第一次從中隨機抽取一張,并把這張卡片標有的數(shù)字記為一次函數(shù)解析式y(tǒng)=kx+b的k值,第二次從余下的兩張卡片中再抽取一張,上面標有的數(shù)字記為一次函數(shù)解析式的b值.
(1)寫出k為負數(shù)的概率;
(2)求一次函數(shù)y=kx+b的圖象不經(jīng)過第一象限的概率.(用樹狀圖或列舉法求解)
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一批日用品,若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)(件)與價格(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求:y與x之間的函數(shù)關(guān)系式;
(2)這批日用品購進時進價為4元,則當銷售價格定為多少時,才能使每月的潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為192m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求x取何值時,花園面積S最大,并求出花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學習小組發(fā)現(xiàn)一個結(jié)論:已知直線a∥b,若直線c∥a,則c∥b.他們發(fā)現(xiàn)這個結(jié)論運用很廣,請你利用這個結(jié)論解決以下問題:
已知直線AB∥CD,點E在AB、CD之間,點P、Q分別在直線AB、CD上,連接PE、EQ.
(1)如圖1,運用上述結(jié)論,探究∠PEQ與∠APE+∠CQE之間的數(shù)量關(guān)系,并說明理由;
(2)如圖2,PF平分∠BPE,QF平分∠EQD,當∠PEQ=140°時,求出∠PFQ的度數(shù);
(3)如圖3,若點E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延長線交PF于點F.當∠PEQ=70°時,請求出∠PFQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點D,DE⊥AB,垂足為E。若DE=1,則BC的長為( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,對角線交于點,,分別是,的中點.下列結(jié)論正確的是( )
①;②;③平分;④平分;⑤四邊形是菱形.
A.③⑤B.①②④C.①②③④D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師提出如下問題:
已知:如圖,△ABC及AC邊的中點O。
求作:平行四邊形ABCD。
小敏的作法如下:
①連接BO并延長,在延長線上截取OD=BO;
②連接DA,DC.
所以四邊形ABCD就是所求作的平行四邊形.
老師說:“小敏的作法正確.”
請回答:小敏的作法正確的理由是_________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,請完成下列表格;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com