【題目】如圖,AB、C分別是線(xiàn)段A1BB1CC1A的中點(diǎn),若△A1BlC1的面積是14,那么△ABC的面積是( 。

A.2B.C.3D.

【答案】A

【解析】

連接AB1,BC1,CA1,根據(jù)等底等高的三角形的面積相等求出ABB1,A1AB1的面積,從而求出A1BB1的面積,同理可求B1CC1的面積,A1AC1的面積,于是得到結(jié)論.

如圖,連接AB1,BC1,CA1,

AB分別是線(xiàn)段A1B,B1C的中點(diǎn),

SABB1SABC,

SA1AB1SABB1SABC,

SA1BB1SA1AB1+SABB12SABC

同理:SB1CC12SABC,SA1AC12SABC,

∴△A1B1C1的面積=SA1BB1+SB1CC1+SA1AC1+SABC7SABC14

SABC2

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市舉行店慶活動(dòng),對(duì)甲、乙兩種商品實(shí)行打折銷(xiāo)售,打折前,購(gòu)買(mǎi)2件甲商品和3件乙商品需要180元;購(gòu)買(mǎi)1件甲商品和4件乙商品需要200元,而店慶期間,購(gòu)買(mǎi)10件甲商品和10件乙商品僅需520元,這比打折前少花多少錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC在平面直角坐標(biāo)系中的位置如圖所示.將ABC向右平移6個(gè)單位長(zhǎng)度,再向下平移6個(gè)單位長(zhǎng)度得到A1B1C1(圖中每個(gè)小方格邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)

(1)在圖中畫(huà)出平移后的A1B1C1;

(2)直接寫(xiě)出A1B1C1各頂點(diǎn)的坐標(biāo).

; ;

3)求出ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市對(duì)位于筆直公路AC上兩個(gè)小區(qū)A,B的供水路線(xiàn)進(jìn)行優(yōu)化改造,供水站M在筆直公路AD,測(cè)得供水站M在小區(qū)A的南偏東60°方向,在小區(qū)B的西南方向,小區(qū)A,B之間的距離為300(+1),求供水站M分別到小區(qū)A,B的距離.(結(jié)果可保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l1分別與x軸、y軸交于點(diǎn)B、C,且與直線(xiàn)l2交于點(diǎn)A.

(1)求出點(diǎn)A的坐標(biāo)

(2)若D是線(xiàn)段OA上的點(diǎn),且△COD的面積為12,求直線(xiàn)CD的解析式

(3)在(2)的條件下,設(shè)P是射線(xiàn)CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線(xiàn)BD上一點(diǎn),PEBC,PFCD,垂足分別為點(diǎn)E,F(xiàn),連接AP,EF,給出下列四個(gè)結(jié)論

AP=EF;②∠PFE=BAP;PD=EC;④△APD一定是等腰三角形.

其中正確的結(jié)論有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠160°,∠260°,∠3120°

試說(shuō)明DEBC,DFAB,根據(jù)圖形,完成下列推理:

∵∠160°,∠260°(已知)

∴∠1=∠2(等量代換)

         

AB,DE相交,

∴∠4=∠160°

∵∠3120°

∴∠3+4180°

         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線(xiàn)軸、軸分別交于、兩點(diǎn),點(diǎn)軸上一動(dòng)點(diǎn),要使點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)剛好落在軸上,則此時(shí)點(diǎn)的坐標(biāo)是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案