已知△ABC中,邊BC的長與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關(guān)系式,并求出面積為48時BC的長;
(2)當BC多長時,△ABC的面積最大?最大面積是多少?
(3)當△ABC面積最大時,是否存在其周長最小的情形?如果存在,請說出理由,并求出其最小周長;如果不存在,請給予說明.

解:(1)由題意,得
當y=48時,=48,解得:x1=12,x2=8。
∴面積為48時BC的長為12或8。
(2)∵,
∴當x=10時,y最大=50。
(3)△ABC面積最大時,△ABC的周長存在最小的情形。理由如下:
由(2)可知△ABC的面積最大時,BC=10,BC邊上的高也為10。
過點A作直線L平行于BC,作點B關(guān)于直線L的對稱點B′,連接B′C 交直線L于點A′,連接A′B,AB′,

則由對稱性得:A′B′=A′B,AB′=AB,
∴A′B+A′C=A′B′+A′C=B′C,
當點A不在線段B′C上時,則由三角形三邊關(guān)系可得:
△ABC的周=AB+AC+BC=AB′+AC+BC>B′C+BC,
當點A在線段B′C上時,即點A與A′重合,這時
△ABC的周長=AB+AC+BC=A′B′+A′C+BC=B′C+BC,
因此當點A與A′重合時,△ABC的周長最小。
這時由作法可知:BB′=20,∴
∴△ABC的周長= +10。
因此當△ABC面積最大時,存在其周長最小的情形,最小周長為+10。

解析試題分析:(1)先表示出BC邊上的高,再根據(jù)三角形的面積公式就可以表示出表示y與x之間的函數(shù)關(guān)系式,當y=48時代入解析式就可以求出其值;
(2)將(1)的解析式轉(zhuǎn)化為頂點式就可以求出最大值。
(3)由(2)可知△ABC的面積最大時,BC=10,BC邊上的高也為10過點A作直線L平行于BC,作點B關(guān)于直線L的對稱點B′,連接B′C 交直線L于點A′,再連接A′B,AB′,根據(jù)軸對稱的性質(zhì)及三角形的周長公式就可以求出周長的最小值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知方程有兩個不同的實數(shù)根,方程也有兩個不同的實數(shù)根,且其兩根介于方程的兩根之間,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點,橋拱最高點C到AB的距離為9m,AB=36m,D,E為橋拱底部的兩點,且DE∥AB,點E到直線AB的距離為7m,則DE的長為   m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與y軸交于點C(0,-4),與x軸交于點A,B,且B點的坐標為(2,0)

(1)求該拋物線的解析式;
(2)若點P是AB上的一動點,過點P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點D為OA的中點,點M是線段AC上一點,且△OMD為等腰三角形,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+bx+3與x軸相交于點A(﹣1,0)、B(3,0),與y軸相交于點C,點P為線段OB上的動點(不與O、B重合),過點P垂直于x軸的直線與拋物線及線段BC分別交于點E、F,點D在y軸正半軸上,OD=2,連接DE、OF.

(1)求拋物線的解析式;
(2)當四邊形ODEF是平行四邊形時,求點P的坐標;
(3)過點A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系中,點O是原點,矩形OABC的頂點A在x軸的正半軸上,頂點C在y的正半軸上,點B的坐標是(5,3),拋物線經(jīng)過A、C兩點,與x軸的另一個交點是點D,連接BD.

(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一點,以M、B、D為頂點的三角形的面積是6,求點M的坐標;
(3)點P從點D出發(fā),以每秒1個單位長度的速度沿D→B勻速運動,同時點Q從點B出發(fā),以每秒1個單位長度的速度沿B→A→D勻速運動,當點P到達點B時,P、Q同時停止運動,設(shè)運動的時間為t秒,當t為何值時,以D、P、Q為頂點的三角形是等腰三角形?請直接寫出所有符合條件的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線C1:y=x2。如圖(1),平移拋物線C1得到拋物線C2,C2經(jīng)過C1的頂點O和A(2,0),C2的對稱軸分別交C1、C2于點B、D。

(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向下平移m個單位(m>0)得拋物線C3,C3的頂點為G,與y軸交于M。點N是M關(guān)于x軸的對稱點,點P()在直線MG上。問:當m為何值時,在拋物線C3上存在點Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

銅仁市某電解金屬錳廠從今年1月起安裝使用回收凈化設(shè)備(安裝時間不計),這樣既改善了環(huán)境,又降低了原料成本,根據(jù)統(tǒng)計,在使用回收凈化設(shè)備后的1至x月的利潤的月平均值w(萬元)滿足w=10x+90.
(1)設(shè)使用回收凈化設(shè)備后的1至x月的利潤和為y,請寫出y與x的函數(shù)關(guān)系式.
(2)請問前多少個月的利潤和等于1620萬元?

查看答案和解析>>

同步練習(xí)冊答案