如圖,半圓O與等腰直角三角形兩腰CA、CB分別切于D、E兩點(diǎn),直徑FG在AB上,若BG=﹣1,則△ABC的周長(zhǎng)為( )
| A. | 4+2 | B. | 6 | C. | 2+2 | D. | 4 |
考點(diǎn):
切線的性質(zhì).
分析:
首先連接OD,OE,易證得四邊形ODCE是正方形,△OEB是等腰直角三角形,首先設(shè)OE=r,由OB=OE=r,可得方程:﹣1+r=r,解此方程,即可求得答案.
解答:
解:連接OD,OE,
∵半圓O與等腰直角三角形兩腰CA、CB分別切于D、E兩點(diǎn),
∴∠C=∠OEB=∠OEC=∠ODC=90°,
∴四邊形ODCE是矩形,
∵OD=OE,
∴四邊形ODCE是正方形,
∴CD=CE=OE,
∵∠A=∠B=45°,
∴△OEB是等腰直角三角形,
設(shè)OE=r,
∴BE=OG=r,
∴OB=OG+BG=﹣1+r,
∵OB=OE=r,
∴﹣1+r=r,
∴r=1,
∴AC=BC=2r=2,AB=2OB=2×(1+﹣1)=2.
∴△ABC的周長(zhǎng)為:AC+BC+AB=4+2.
故選A.
點(diǎn)評(píng):
此題考查了切線的性質(zhì)、正方形的判定與性質(zhì)以及等腰直角三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(新疆烏魯木齊卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,半圓O與等腰直角三角形兩腰CA、CB分別切于D、E兩點(diǎn),直徑FG在AB上,若BG=﹣1,則△ABC的周長(zhǎng)為
A、 B、6 C、 D、4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com