作业宝如圖,已知Rt△ABC中,∠C=90°,BC=4,AC=4,現(xiàn)將△ABC沿CB方向平移到△A′B′C′的位置,若平移距離為3.
(1)求△ABC與△A′B′C′的重疊部分的面積;
(2)若平移距離為x(0≤x≤4),求△ABC與△A′B′C′的重疊部分的面積y,則y與x有怎樣關(guān)系式.

解:(1)∵∠C=90°,BC=4,AC=4,
∴△ABC是等腰直角三角形,
∴∠ABC=45°,
∵△A′B′C′是△ABC平移得到的,
∴△ABC≌△A′B′C′,
∴∠C=∠A′C′B′=90°,
∴∠BOC′=45°,
∴△BOC′是等腰直角三角形,
∵BC′=BC-CC′=4-3=1,
∴S△BOC′=×1×1=,
即S陰影=
(2)根據(jù)(1)可知兩個(gè)三角形重合部分是等腰直角三角形,
那么S陰影=(4-x)2
分析:(1)由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,進(jìn)而可求∠BOC′=45°,從而易證△BOC′是等腰直角三角形,于是利用三角形面積公式可求S△BOC′;
(2)根據(jù)(1)易知△ABC與△A′B′C′的重疊部分是等腰直角三角形,從而可求陰影部分的面積.
點(diǎn)評(píng):本題考查了平移的性質(zhì)、等腰直角三角形的判定和性質(zhì),解題的關(guān)鍵是證明△BOC′是等腰直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,BD的垂直平分線分別交AB,BC于點(diǎn)E、F,CD=CG.
(1)請(qǐng)以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個(gè)菱形和兩個(gè)等腰梯形.那么,構(gòu)成菱形的四個(gè)頂點(diǎn)是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個(gè)頂點(diǎn)是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請(qǐng)你各選擇其中一個(gè)圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
(1)求證:
AB
=
AF

(2)若BE•EF=32,AD=6,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長(zhǎng)線上一點(diǎn),PE⊥AB交BA延長(zhǎng)線于E,PF⊥AC交AC延長(zhǎng)線于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長(zhǎng);
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個(gè)單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案